
AD-AO92 216 &IR FORCE INST OF TECH WRI&HT-PATTERSON AFS ON F/0 9/.
rONSIDERATIONS FOR AN ASSEMBLER SCHEDULED MULTI-MaICROPROCESSOR --CTC(U)
aU SS 96 0 L STEWART

UNLASFI FT- CI-80-41TN L

!-III""I'
-II."'-

1111 12. 113 &Iiiit I- m

111111 12.2

11111L2 L~ t

MICROCOPY RESOLUTION TEST CHART

REPORT"" _R12. GVT ACCESSION NO. 3. RECIPfNT- CAYALOG NUMBER

Cnsiderations for an Assembler Scheduled THS/1/AAl

~ W6APBROOR45433 1G. REPORT NUMBERt

9. MONIORING PRANCYAI NAME N ADDRESS --ntfo Cnriln 0fcy . SECURATY CLAMES. O ET ureoTS

AIS. DSTIUDETIO SATEMN (ofur thiv er)

IS. SUPPRLENTAR OTC SAEADADESZkFTU

SIlIFION WPF OHPG 45433~tO

110

U DDI jN73 413 EDITON F I OV 515 BSOETEUNCLASS

SECURT DEATSIFITIN PA GE RAnDt .IN

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

*-

CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED

tit 1.TI-lICROPROCESSOR SY3TEM

Richard Lee Stewart

Certificate of Approval:

SII R. leath, h man

Wrofessor A.isistant Professor
Electrical Engineering Electrical Engineering

V. P. Nelson Pnul F. Parks, Dean
Assistant Professor Graduate School
Electrical Engineering

li : t i

CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED

MULTI-MICROPROCESSOR SYSTEM

Richard Lee Stewart

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

August 26, 1980

CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED

ULTI-MICROPROCESSOR
SYST04

Richard Lee Stewart

Permission is herewith granted to Auburn University to make copies of
this thesis at its discretion, upon the request of individuals or
institutions and at their expense. The author reserves all publication

Signature of Author

Copy sent to:

Date

L

i

i

VITA

Captain Richard Lee Stewart, son of Harry Baker Stewart and Anne

(Butler) Stewart, was born December 7, 1946, in Pittsburgh,

Pennsylvania. He graduated from Hillsboro High School, Nashville,

Tennessee, in 1964. In August, 1964, he entered General Motors

Institute and received the degree of Bachelor of Mechanical Engineering

(Automotive Design) in August, 1969. He immediately entered the United

States Air Force, Officer Training School, and was commissioned a Second

Lieutenant on November 13, 1969, at Lackland AFB, Texas. He received

the Pilot Rating on February 12, 1971, at Vance AFB, Oklahoma. After

various flying assignments he entered the Graduate School, Auburn

University, in September, 1976, in the Air Force Institute of

Technology, Civilian Institution Program. In March, 1978, he was

assigned to the Directorate of Computer Sciences, Armament Division, Air

Force Systems Command at Eglin AFB, Florida. He married Poonsri,

daughter of Jang and Prem Runkshokgam of Bangkok, Thailand, in December,

1971. They have three children, Noporn Harry, Panawjidt Anne, and

Wichan Richard.

iv

THESIS ABSTRACT

CONSIDERATIONS FOR AN ASSEMBLER SCHEDULED

MULTI-MICROPROCESSOR SYSTEM

Richard Lee Stewart

Master of Science, August 26, 1980
(B.M.E., General Motors Institute, 1969)

116 Typed Pages

Directed by J. Robert Heath

A parallel suitability or processability checker was incorporated

into pass one of an INTEL 8080 cross assembler. For an assembler level

source program, it yields a suitability factor for parallel processing,

a jump structure analysis, and the nodes of Ramamnoorthy's Loop Free

Program Graph shown on'the assembly language program source list. This

information can be used to construct the Loop Free Program Graph.

This assembler modification is based on previous research by

Ramamoorthy and others which achieved dynamic scheduling of high level

language parallel processable tasks, at run time, in a multiprocessing

environment. Differences in analyzing high level language (FORTRAN) and

assembly language programs are explained.

tlight assembly language source programs were analyzed to test the

suitability checker and investigate favorable characteristics of

assembly language loops with respect to parallel processability. -1

v

4 Suggestions are made for further development of a parallel task

6' recognizer for assembly language programs using Ramamoorthy's

connectivity analysis method.

Design considerations are outlined for development of an assembler

scheduled multi-microprocessor system. The machine would execute source

program partitions in parallel on a production basis a large number of

times. This would be possible after a combined assembly and schedule of

the load modules.

Applications envisioned are microprocessor based controllers or

instruments that would achieve increased speed at less cost by

performing such operations as input, calculation, retrieval, and output

simultaneously. Also, economical machines could be designed to study

aspects of parallel processing for large scale computers and high level

languages.

vi

TABLE OF CONTENTS

LIST OF FIGURES ix

I. INTRODUCTION 1

II. CONSIDERATIONS AND ASSUMPTIONS 4

Favorable Characteristics of Parallel Processable Programs
Advantages of Assembly Language Suitability Checker
Assumptions for Assembly Language Suitability Checker

III. ALGORITHM FOR SUITABILITY CHECKER 16

Common Areas and Variables
Counters and Other Variables
Instruction Scan

Checking Loop Constructs
Nest Check
Final Checks

Jump Analysis
Loop Free Program Graph

IV. SUITABILITY FACTOR AND DIAGNOSTIC MESSAGES 45

Suitability Factor
Possible Errors Noted by the Analysis
Warnings Made by the Analysis
Notes Made by the Analysis

V. EXPERIMENTAL RESULTS 52

Findings
Explanation of a Sample Program Output

VI. CONCLUSIONS AND RECOMMENDATIONS 69

Significance of this Work
General Conclusions
Suggested Complementary Work
Scheduling Considerations
Configuration and Use of the Multi-Microprocessor System

BIBLIOGRAPHY 78

vii

WIMP

APPENDICES . 80

A. Suggested Interprocessor Communications

B. Assembler Modifications Listing

C. Progrom Specifications of the Modified Assembler

D. INTEL 8080 Op-Code Groups

viii

LIST OF FIGURES

1. Graphs Used By the Parallel Task Recognizer•.• 5

2. FORTRAN-Like Loops in Assembly Language 13

3. Parallel Processing Within a Loop 15

4. Modifications to the Assembler Program 17

5. Analysis for a Simple Microprocessor Program 18

6. Variable Initialization 22

7. Flowchart for Instruction Scanner 24

8. Flowchart for Finding Forward Jump Destinations 26

9. Flowchart for Checking Loop Constructs 27

10. Task Convergence and Overlapped Loops 34

11. Flowchart for Nest Check 35

12. Flowchart for Final Checks and Jump Analysis 38

13. Flowchart for Subroutine LSTOUT Modification 41

14. Flowchart for Subroutine FINDLP 44

15. Length of Nested Loops 17

16. Experimental Results 53

17. Sample Program Output 55

18. Loop Free Graph of the Sample Program 67

19. PACE Instruction Decoding Sequence 76

ix

I. INTRODUCTION

This thesis addresses the problem of hod to better exploit the low

cost of microprocessors and overcome the drawback of limited speed

capability. The method investigated involves using several co-operating

parallel processors for faster execution of a single program that will

be assembled once and run many times. This would spread the

optimization cost over a very large number of applications [].
Many reasons have been given for parallel processing. A very

significant increase in system throughput is theoretically possible

depending on the system and the application [2-10]. Almost every

computer program has some potential for parallel processing, because the

input/output (I/O) can be overlapped with the function performed by the

computer (11]. The relation of parallel processing to time sharing also

has been discussed as justification [121. Speed is not the only reason

however.

Memory and processors can be used more effectively.

Microprocessors are now very inexpensive, and using more processors

better utilizes the more expensive memory. This is possible in a wide

range of applications. Most microprocessor systems are interrupt driven

and should have good potential for parallel processing because the

interrupt task can usually be done concurrently with the main program.

2

6h-ile improving existing systems, the benefits can be compounded by

developing design guidelines for future systems.

Using microprocessor systems would be a cost effective means for

further research on parallel processing. This research is needed,

because many such systems have been suggested, but few attempts have

been made to partition the application programs into parallel

processable segments [8,91. Some work has been done in this area for

use with large scale computers, however.

Solutions to the problems of synchronizing shared resources have

been found by Djkstra, Knuth, and Coffman [11]. Previous research on

parallel processability and task partitioning on high level language

programs has been done by Bernstein [12] and Ramamoorthy [1,11,13-15].

How does this previous work relate to microprocessors?

Ramamoorthy's results with FORTRAN programs are applicable to a

variety of uses on a limited scale [1,141. The source program must be

less than 200 executable statements. It is executed on a large scale

CDC 6600 computer, and the parallel processes are scheduled dynamically

during execution. Only non-nested DO loops are allowed. Little

apparent interest or exploitation of these techniques was shown between

1971 and 1978. 5ut in the past 18 months there has been increased

commercial interest in multi-microprocessor systems and concurrent

processing [2-9). However, multi-microprocessor software and systems

have not developed along the guidelines, suggested by Ramamoorthy, for

large computers.

The currently developing distributed multi-microprocessor systems

(master/slaves) do not fully utilize the master processor and are

usually uniquely specialized systems that are not generally applicable

to a variety of uses. They are, therefore, sometimes not as cost

effective as possible. This is parallelism at the operating system

level rather than at the application program level; multiprogramming vs.

parallel processing.

There is an untapped potential for a more generalized system that

makes parallel processing almost transparent to the user or

microprocessor system designer. The following chapters will discuss:

1. Factors bearing on the problem;

2. Partial solution - suitability checker;

3. Interpretation of results;

4. Suggestions for further work.

It is assumed that readers have a rudimentary knowledge of common terms

used to describe an assembler program.

II. CONSIDERATIONS AND ASSUMPTIONS

The problem of implementing an assembler scheduled multi-

microprocessor system may be broken into five parts [1,4]. First,

appropriate candidate programs must be found by using a suitability

checker. Secondly, parallel processable portions of the program must be

identified using a parallel task recognizer. Thirdly, synchronization

primitives must be added for interprocessor comnunications and

scheduling. Fourthly, utilizing the parallel task recognizer and

scheduling information, the program must be loaded into memory for

parallel processing. Lastly, the memory organization and system

hardware must be defined. These are significant problems for assembly

language source programs because of the simplicity and fundamental

nature of microprocessor based systems. Therefore, an attempt was not

made to solve the entire problem. This thesis deals mainly with part

one and portions of part two of the problem. This includes, for

assembly language source programs, making a suitability determination

and finding elements of Ramamoorthy's reduced or loop free program graph

(LFPG) [13,14]. The LFPG has a node for each instruction in the source

program except for the case of loops. For loops, all instructions or

tasks are grouped together and represented as a single node; thus the

term, loop free. Fig. 1 illustrates examples of the graphs used by

Ramamoorthy's Parallel Task Recognizer. It should be emphasized that

4

5

Original Program to Add Analysis of Task Transitions2

32 Bit Numbers 1

Task Source Code Function of Action

1 .ADD 32 LXI B, 3 immed. operand r B = 3

2 DAD B task 1, r H&L r H&L = r H&L+r B&C

3 XCHG task 2, r D&E exchg.r D&E, r H&L

4 DAD B tasks 1 & 3 r H&L = r H&Lr B&C

5 STC nothing set carry

6 CMC task 5 reset carry

7 .LOOP LDAX D task 3 load addend 1

8 ADC M tasks 4,6 &7 add acc.+r H&L, carry

9 STAX D task 8 store result

10 DCX D task 3 r D&E = r D&E - 1

11 DCX H task 4 r H&L = r H&L - 1

12 DCR C r C decrement loop index

13 JP .LOOP task 12 loop if positive

14 RET task 13 return

Figure 1

Graphs Used by the Parallel Task Recognizer

'This subroutine requires that register pair H&L point to the first
byte of the first number. Register pair D&E points to the first byte of
the second number. Register C is set to two.

2Transitions exist only between tasks which change a value and the
next task which uses that same value. It is not really necessary to
analyze task transitions within the loop, but this is done for clarity
and completeness. As is shown in the Parallel Processable Task Graph on
the following page, a transition exists from task I to task 2, because
task 2 uses the results of task 1, etc.

10

Permissible Transition Loop Free or Parallel Processable
or Program Graph3 Reduced Program Graph4 Task Graph5

Program Task Equivalent Task Task Partition

2 2 Input& 2 2

3 3 Point 3 3

4 4 4 4

5 5 5 16 (Prepare

7' 7 Add & Output 7

13 Return 8 5

12 9 former task 14

11 10

Figure 1 (continued)

Graphs Used by the Parallel Task Recognizer

3Each node represents a statement in the program shown on the
previous page. Unless an element is a branch, its successor is the next
node.

4program representation in which all elements of a loop are
considered as a single task or a node on the graph.

5Time ordering exists between nodes connected by arrows. Partitions
are identified by using Ramamoorthy's Matrix Method of Precedence
Partitions 141. Partitions would be executed by two processors. Tasks
in the same partition are executed concurrently. The numbers to be added
and the result would be stored in common memory. The subroutine could
run up to 19 percent faster, i.e., 16 tasks vs. 21 tasks for the complete
process. Exactly how much faster depends on the overhead of
initialization and transfer of information between the two processors.
If the routine were being called from a loop, the benefits would
increase with each iteration of the loop.

r

7

Ramamoorthy's work was based on high level language source programs.

Here, the source programs are in microprocessor assembly language which

significantly complicates the overall task. This chapter first

discusses the problems of implementing a suitability checker by checking

for favorable characteristics in pass one of the assembler. Second, the

differences in working with FORTRAN and assembly language are addressed,

because Ramamoorthy's work dealt only with FORTRAN programs.

Favorable Characteristics of Parallel

Processable Programs

Bernstein stated the conditions necessary for parallel processing

and why program suitability is programmer dependent when dealing with

implicit (vs. explicit) parallelism [12]. The same task or algorithm

could be coded more or less favorably dependir; on the programmer's

style or sequence. Based partially on Bernstein's work, Ramamoorthy

devised a hueristic formula for determining suitability for parallel

processing [I].

The formula has nine variables used with FORTRAN in calculating a

suitability factor, SF:

SF N=R + NA + NP + NC + ND - NI - NG -
LP- LD LP

where: NR = READS or input
NA = Arithmetic statements
NP = PRINTS or output
NC = CALLS
ND = DO loops (loops of known boundaries and

iterations)
NI = IF's or conditional branches
NG = GO TO's or unconditional branches
LP = Total executable statements
LD = Total statements in DO loops

8

This formula was based on research gathered after using Ramamoorthy's

parallel task recognizer to analyze FORTRAN programs. It shows as plus

factors, those tasks that could be done simultaneously given that

Bernstein's conditions were satisfied. The negative factors represent

conditions that delay scheduling decisions until execution time, i.e.

conditional branches and unconditional forward branches. These state-

ments can generate intricate paths which complicate prediction of

process flow [12). The factors LP and LD reflect the fact that DO loops

enhance possibility for parallel processing provided the loops are not

too long with respect to other partitions (tasks that can be executed as

a block). Obviously, if the loops are very long, other partitions would

be executed before the loop finished. One processor would have to wait

so long for the loop to finish, that benefits of parallel processing

would be lost. It would be better in such a case to process

sequentially and not incur the overhead of establishing parallel

processes, because the overhead might cancel any benefits of parallel

execution.

If this works for FORTRAN it would seem to be applicable for any

language. But it is significant to note that although the algorithm for

a suitability checker or parallel task recognizer is language

independent, its implementation is obviously dependent upon the level

and structure of the source language to a great extent. Thus a

completely universal application is not possible (11,14]. If further

work is necessary to implement the recognizer on another language, why

choose assembly language?

9

Advantages of Assembly Language

Suitability Checker

There are many significant reasons to analyze assembly language for

parallel processing. First, there is a large potential to improve many

existing assembly language programs, since they are usually more memory

efficient than high level language programs [3]. Second, this research

could indicate the need for high level languages such as PASCAL that

allow explicit indications of parallelism to be used on microprocessors

[8,11]. Third, we can identify and standardize the most effective

parallel constructs as desirable explicit capabilities of high level

microprocessor languages [9]. Fourth, utilizing implicit parallelisms

in existing assembly language does not require the programmer to learn a

new language. Fifth, studying parallel processing with small computer

systems would be cost effective. And when the results are better

understood, the techniques may be applied to more sophisticated systems

for further benefits. How then can this analysis be applied to assembly

language?

Two main differences exist between FORTRAN and assembly language

with respect to implementing the suitability checker and parallel task

recognizer. One, INTEL 8080 language has no explicit constructs for

loops of known iteration or length that can be easily determined ty

scanning a single line of the source program. But loops in assembly

language can be compared to certain characteristics of FORTRAN-like

loops, to find the loops for which the analysis applies. Two,

determining the task transitions may not be as easy in assembly language

as in FORTRAN [1,12]. In the parallel task recognizer the parallel

10

processable task graph requires that a determination be made when the

output or result of one task is used by or input to another task. This

is fairly easy in FORTRAN, because memory locations are stated

specifically in the instructions [12]. It is not so obvious in assembly

language, because many transitions depend on more subtle conditions such

as flags set or interrupts enabled. Although these can be determined it

is not always an easy matter of scanning. The recognizer will require

more sophistication. But there are other considerations besides

language.

Ohy use one time preload scheduling instead of dynamic scheduling

as is done with some high level languages? it is because a

microprocessor is usually driving a dedicated system, no matter how

general its structure may be. It does not need the flexibility provided

by a dynamic scheduler nor the associated overhead. By using one time

scheduling, optimization cost is spread over thousands or millions of

progran executions [1]. According to the author's preliminary

investigation with the NATIONAL SEIICONDUCTOR microprocessor family, the

processor speed does not permit dynamic scheduling at the user program

level that achieves any meaningful benefit if it is indeed possible.

This conclusion is supported by others [8].

Dynamic scheduling with one processor acting as an interpretation

or scheduling unit for other execution units and transfer units has been

suggested by Lorin [103. Because non-nicroprogramable processors are

too slow to function as the scheduling unit, this function was

relegated to the assembler for a one time schedule at load time. But

even this method requires much analysis time. Therefore it is very

11

desirable to assure some hope of success. This is the reason for the

suitability checker (1].

The suitability checker is important, because the parallel task

recognizer requires large arrays with the number of elements equal to

the square of the nunber of executable statements in the source program.

This not only requires a large amount of memory, but requires more

execution time to manipulate the arrays. The suitability checker,

however, requires significantly smaller arrays. The largest is only

four times the number of executable statements. Also there are two

reasons why the parallel task recognizer alone is not sufficient for

analyzing assembly language. First, it does not reveal anything about

loop structure that would aid subsequent checking for loop iterations.

Secondly, it requires more array manipulation for assembly language to.

find loops, because they are not explicit as in FORTRAN. But, all

information required is available in assembler pass one, so it can make

a determination before using the parallel task recognizer. The results

could be indicated and decisions requested interactively or made based

on a predetermined value.

Assumptions for Assembly Language

Suitability Checker

Two main assumptions were made to implement the suitability checker

with respect to INTEL 8080 assembly language. These assumptions involve

determining instruction types and recognizing loops. The INTEL 8080 was

chosen because of experience with it, and because it is one of the most

widely used microprocessors. These assumptions should apply to most any

microprocessor language for recognizing instruction types and

12

recognizing loops. Recognizing instructions is obviously machine

language dependent. The decision to use op-codes or mnemonics to

recognize instructions depends on how op-codes are grouped and how well

mnemonics relate to a class of instructions based on the variables in

Ramamoorthy's suitability formula. The easiest method should be used

for the machine in question. For the INTEL 8080, checking op-codes

works very well to recognize instruction types. See Appendix D. But we

must also be able to recognize loops.

Assume for assembly language that any backward jump is a loop.

Although this is not the same as a DO loop, assune that these locops are

for a known number of iterations. If necessary, some form of check can

be done later to determine which loops are for indefinite iterations.

All types of FORTRAN-like loops can be described in assembly

language with three basic constructs shown in Fig. 2. Three loop

classes are necessary because loops are classified structurally by their

entry and exit. For a simple loop the conditional junp provides entry

and exit. For an intermediate or complex loop the unconditional junp

back always provides a possible entry. The conditional jumps around the

junp back provide a possible exit. If either entry or exit is not pos-

sible, there is probably a logical error. Why is it necessary to check

for structure? First, because overlapped loops are not allowed in this

analysis. Secondly, because analyzing structure makes some forms of

error detection possible by determining if the minimun structure is not

present. Thirdly, because it will allow later analysis of factors

affecting iterations for scheduling considerations. After analyzing the

13

CLASS 1 CLASS 2 CLASS 3

SIMPLE INTERMEDIATE COMPLEX

\.4 CONDITIONAL JUMP 'A UNCONDITIONAL JUMP

All loops may be represented as one of these three classes.

The class determination factors are the entry and exit to

the loop. Other jumps may be present but are not required.

If the minimum conditions are not satisfied, there is prob-

ably a logical error.

OVERLAPPED

Overlapped loops are not allowed, because they cannot be

considered as either a single task or two discrete tasks

by the suitability checker or the parallel task recognizer.

They will be noted by the suitability checker. The over-

lapped loops would cause the results to be invalid, unless

the overlapped loops are nested inside a third loop. In

this case they would make no difference, because all tasks

included in the outer loop would be considered a single task.

Figure 2

FORTRANT - Like Loops in Assembly Language

I°

14

loops with respect to structure, what is the significance of other

jumps?

There are three other situations wherein jumps are related to the

loops: jumps out, jumps around, and internal jumps. Jumps out of the

loop in excess of minimum requirements are associated with the loop.

Possible transitions are noted, but the extra jumps are not significant

to the structural classification. Jumps around the loop are not

associated with the loop, because they eliminate it as a task, but the

fact is noted and analyzed for possible errors. Other internal jumps in

excess of minimum requirements are associated with the loop, because the

recognizer will treat the whole loop as a single task. Also, each loop

could be further analyzed as a subprogram to check possibility for

parallel processing within the loop. See Fig. 3.

Based on these assumptions it is possible to define a Icop, what

loop classes are present as shown in Fig. 2, and had other jumps relate

to the loops. Basic rules are established for checking type and number

of instructions, recognizing loops, and deciding how they affect the

subject program in terms of its suitability for parallel processing.

The next chapter discusses the suitability checker algorithm.

"" I

15

G N

B_= B + G

Example of a loop as a single

A B C7task to find ~

LLEL PROCESS Example of using two processes

A=3A-CD=-E+ to find. A and2 3

tsimultaneously,

Lmr then find G after

returning to a single process.

Figure 3

Parallel Processing Within a Loop

III. ALGORITHM FOR SUITABILITY CHECKER

The assembler suitability checker is based on Ramamoorthy's

research discussed in the previous chapter. The suitability checker

presented herein has been adapted for use with assembly language. These

changes to the cross assembler are shown in Fig. 4. During assembler

pass one it scans the instruction's op-code to count different types of

instructions for the suitability factor, SF. If a jump is found, it

checks to determine the type of junp and build a jump table. At the

end of pass one, the loop analysis process requires scanning from the

end of the source program to the beginning to see if minimal

requirements for loops are met, check for possible errors, calculate the

SF, and find the nodes of the loop free program graph (LFPG). The

output is shown in the short example listing in Fig. 5.

The loop analysis is the most lengthy and complex portion of the

algorithm. The source code is checked backwards, because it is possible

to work back from the junp and determine what is included in the loop.

Multiple jumps cannot start at the same point, but they can terminate at

the same point. The objective is to associate as many jumps as possible

with loops. Others not associated must be isolated and are, therefore,

negative factors in the suitability equation. This is so, because every

statement contained in a loop is treated as a single task by

Ramamoorthy's parallel task recognizer.

16

17

J INITIALIZE
ADDITIONAL I
VARIABLES

I I
PASS ONEI

INSTRUCTION SCAN
~TO DETERMINE

INSTRUCTION TYPES I
IFOR S F CALCULATION

CHECK LOOP CONSTRUCTS JUM"P RELATIONSHIPS
(DO 390) ARE DETERMINED BY

THESE DO STATEMETS CCMPARING EXECTLABLECHECK BACK JU',1S
REFER TO THE PROGRAM (DO 574) INSTRUCTION NUMBERS.
IN APPENDIX B, OBJECTIE IS TO

C ECK FORWARD JUMS ASSOC:ATE AS MANTY
(DO 577) JU S AS POSSIBLE

W TOOPH LCCPS.

FD, NEII

S07 JUM ANAL IS

j NITIALIZE
II

LA-S TWO I T-

EXISTING PROGRAM ADDED PROGRAM

Figure 4

Modifications to the Assembler Program

18

- V . -T C'*

.. . •*. - . " - -*7 '

77

"^) -+ P>:]:~

:7 7

'. .Cc .i 2 ~-

* . "." ' .(E 2 "
= v

=: '-; - . .

, 'z,

I .. , S T 7,- ", L

T* U - ~ ~

T- '-. ,:

S- - -- i

-L? .'- - ;'- " -*- 74

.' " " - ;""
- P"

L.L C

, I..' -c"

I': "L Y 7: I: z -T 7C Tr

Figure 5

Analysis for a Simple Microprocessor Program

19

This chapter explains how the suitability checker is incorporated

into the assembler. Although it is possible to quickly find jumps and

other types of instructions to count for the SF calculation, more

analysis is required to determine nested loops, jumps not associated

with loops, and number of instructions within loops. This is the

purpose of the loop analysis. After finding the types of instructions,

all of the loops must be checked to determine their construction. This

is a means of determining the relationships of all jumps according to

the three loop constructs defined in the previous chapter. Each jump is

first checked to see if it is already associated. If not, it is checked

to find if it is forward or back. If back (a loop), all forward jumps

are checked against it to see if any forward jumps go around the loop,

jump out of the loop, or jump into the loop. This information is used

to determine the loop class or any errors. On the other hand, if the

jump being checked is forward, checks of all forward jumps and each

subsequent loop are made to see if it jumped around any loops, if it

jumped around any other forward jumps, or if any forward jumps jumped

around it. In this way, the relationship of all jumps is determined and

analyzed for errors. Then the identifications for nested loops,

unassociated forward jumps, and instructions within lcops can be made.

The remainder of this chapter discusses in detail the algorithm

necessary to modify the main assembler program, modify the source list,

and add one subroutine to find loop numbers. This includes discussion

of common areas and variables, instruction scan, loop structure check,

nested loop check, SF calculation, jump analysis, showing the nodes of

20

LFPG, and subroutine FINDLP. See Appendix B for the assembler

modification instruction listing.

Common Areas and Variables

Two named commons, LOOP and INST, were added to the main program.

The array sizes chosen have proved workable, but could be increased if

desired. Common LOOP contains information about loops found in the

source program. It includes four variables. LPMAX is the total number

of loops. Array LP (100) is the loop table which contains the executable

instruction number of each loop's jump instruction. LPNO, loop number,

is the pointer to the loop array, LP (100). LODES is a pointer to the

loop table entry whose destination is currently the lowest during the

nest check. The other common, INST, contains information about

instructions. It has five variables. The array JPX (IC00,2), for

jump/execution number, holds the jump number and executable instruction

number for each line of source code. The array JP (200,4), for jump

table, holds four data for each jump. That is: 1) the executable

instruction number of the jump, 2) the executable instruction number of

the destination, 3) the type of jump or class of loop, and 4) the

pointer to the associated loop. MSTOPN, for stop number, and MSTOPD,

for stop dot, are used in printing the source list to show the

destination and jump for each outside loop. LFPG is the node number of

the loop free program graph. The array JPDES (200), for jump

destination, is used only by the main program as a table of jump

destinations. It is not in a common. It holds the symbol table pointer

for each jump's destination. This is required, because the executable

21

instruction number of the forward jump's destination is not known until

the end of pass one. For a list of all variables, see Fig. 6.

Counters and Other Variables

The suitability factor, SF, requires seven counters:

SF = ((NIO+NAL+NC+NB-N)/(NX-NL)) - (UL/NX) t
NIO is the number of input or output instructions (equivalent to FORTFA

reads and writes). NAL is the number of arithmetic and lcgical

instructions. NC is the number of unconditional calls. '.S is the

number of loops (backward jumps). NF is the number of forward jumps not

associated with a loop plus the number of conditional calls. 'X is the

total number of executable instructions. NI is the total number of

instructions contained in outside loops. Note that this includes all

instructions in locps, but instructions in nested loops are not counted

more than once. By comparing these seven variables to Ramamcorthy's

formula on page 7, the relationships may be noted. Six additional

variables are required to modify the program.

NJ is the jump table pointer to array JP (200,4). NJMAX is the

total number of jumps. KPTR is an additional symbol table pointer that

can be used to determine a label location without disturbing the

original symbol table pointer, SMBPTR. K, the instruction type, is part

of the original assembler. It is used with the original ICODE, the

instruction op-code, to determine the variables for SF. See Appendix D

for explanation of op-code groupings. KDEST is used as the address of a

jump destination, so a label location can be noted without disturbing

the original symbol table pointer. The next section explains how all

these variables are used in the analysis.

22

INITIALIZE
ADDITIONAL
VARIABLES

INITIAL USED
VARIABLE DESCRIPTION VALUE BY

COMMON /LOOP/

LPMAX TOTAL NUMBER OF LOOPS 0 PASS 1

LP(100) LOOP TABLE O's PASS I

LPNO LOOP TABLE POINTER 0 S R FINDLP

LODES LOOP TABLE POINTER TO LOW DESTINATION LPMAX PASS 1

COMMON /INST/

JPX(1000,2) JUMP NO. & EXEC. NO. FOR EACH STATEMENT O's PASS 1
S R LSTOUT

JP(200,4) JUMP TABLE O's PASS 1

MSTOPN FLAG TO STOP LFPG NUMBERS NX S R LSTOUT

MSTOPD FLAG TO STOP DOTS (LFPG NON NODES) EX. 'O. S R LSTOUT
OF OUTSIDE JUMP

LFPG LFPG NODE NUMBERS 0 S R LSTOUT

JPDES(200) DESTINATION TABLE (SYMBOL POINTERS) O's PASS 1

NJ JUMP TABLE POINTER 1 PASS 1

NJMAX TOTAL NUMBER OF JUMPS NJ-1 PASS 1

KPTR AUXILLIARY SYMBOL TABLE POINTER CURRENT PASS 1
S. T. POINTER

SMBPTR ORIGINAL SYMBOL TABLE POINTER 0 PASS 1

K ORIGINAL INTEL INSTRUCTION TYPE 0 PASS 1

ICODE ORIGINAL OP-CODE TABLE PASS 1

KDEST AUXILLIARY DESTINATION ADDRESS CURRENT PASS 1
DESTINATION

Figure 6

Variable Initialization

23

Instruction Scan

The original assembler program is altered so that the scanner

(program label 500) checks each source line after the assembler finishes

and before the next source line is read. See Fig. 7. The scanner

checks the op-code, ICODE, which is already available to determine the

instruction type for SF calculation. For the INTEL 8080 language itwas

found convenient to check op-codes because of the way they are grouped.

See Appendix D. The type of instruction can be determined by checking

within a range of op-codes. If it is a jump, note jump type as follows:

1. Type 1 is conditional backward;

2. Type 2 is unconditional backward;

7. Type 6 is conditional forward;

Type 8 is unconditional forward.

Forward jumps are distinguished from backward jumps by the fact that

only backward jumps have a destination defined prior to their encounter
by the scanner. This is determined by checking the symbol table. If

the destination is undefined, either the jump is forward or there is an

error. Based on this, construct the initial jnump table in array JP.

This includes the jump's execution number, destination if backward or

KDEST if forward, and jump type. Backward jumps only (loops) are

associated with themselves. Continue by counting executable

instructions, but comments and pseudo op's are not counted. Then return

to the assembler to read the next source line at program label 1. At

the end of pass one, signified by the END pseudo op, find the executable

instruction number of the destination for all forward jumps. See Fig.

24

FOUR ENT~RY POINT'S TO INSTRUCTION

CHECK FROM THE ASSEMBLER, WHERE 500

IT FOUND EXECUTABLE INSTRUCTIONS.

500 INTUTOJUP

TYPESS

NOT FOR OR BACK?
USDS

FOR

530 APN

SOURCE LINE

Figure 7

Flowchart for Instruction Scanner

25

8. Prior to pass two, check loop constructs, find nested loops, and do

the jump analysis.

Checking Looo Constructs

This discussion is supplemented with flowcharts throughout the

following pages. Also the reader may wish to refer to Appendix B. All

program labels and format statements refer to the program listing of

assembler modifications in Appendix B.

Loop constructs must be checked to classify loops and find any

structural errors as well as to associate all possible jumps. This

process is called DO 590 in the program. See Fig. 9. The index is MC.

Note that since it is desirable to check backwards, the index is

manipulated to do this and the reverse index is MJ. First, in the jump

table, check if the jump is already associated. If it is, go to 59,

because that means it has already been checked. If not, branch

depending on whether the jump is forward or back.

If the jump checked by DO 590 is backward signifying a loop, go to

label 562, the start of DO loop 574. This is shown in Fig. 9. Uli

forward jumps are checked against the loop for possible association with

it. To be associated, a jump must start in the loop. If it does start

in the loop, there are two possibilities. If the jump stays in the

loop, it is not significant to the structural classification unless it

jumps around another unconditional jump out. If a jump does exit the

loop, it is associated, and the loop is checked for entry and exit.

This is done by checking all previous jumps out to make sure one is not

unconditional. This could preclude entry to the loop. If such an

26

ENTRY POINT FOR INITIAL JUMP

CHECK FROM "END" PSEUDO OP j)-

554 SAVE NO. OF AT END OF ASSEMBLER PASS ONE.

JUMPS & LOOPS

NJMAX LPMAX

DO 557 JC FIND EXECUTABLE INSTRUCTION RM14ER

OF FORWARD JUMP DESTINATIONS.

KNON?55 CHECK NEXT FCRWRD JMP.

DO 555 JS CHECK ALL SYMBOLS TO MATCH

S UNICTOWN DESTINATICNS

Fiur PU ES.I
MATwCHr o i~igFradJm etnto~

272

(DO 590 NJ) ANALYZE LOOP STRUCTURE BY ASSOCIATING ALL
CHECK THROUGH POSSIBLE FORWARD JUMPS WITH LOOPS. LOOK FOR
JUMP TABLE
BACKWARDS MINIMUM STRUCTURAL REQUIREMENTS. CLASSIFY.

ASOC Y590 CHECK N~EXT JUMP.

FWD OR576 ~-HECK FORWARD JUMlP.

FBgCKe?

FNoIHRtfrCekgLopCnrcs

566 EXIT EIT

(DO 570 570 CHECKL PREVIT FORWARD JUMP.

EXI iND 570 CHECK EXT.FRADUP

FlCochr 57 Check Loop COtRU

I7

29

~566

FXIST 90
contTR

Fiue9(cniud

FlowS ar foECekigLopCosrut

30

unconditional jump out is found, a further search is made for a

conditional forward jump around it. This complex construct identifies a

Class 3 loop as shown on the second page of Fig. 9 and in Fig. 2.

Each exit is also checked to see if it is already associated. If

it is, this implies the presence of nested or overlapped loops, because

one jump exits at least two loops from the same point. Multiple

associations are noted, because the jump table per-nits only one

association to be stored for each jump. The loop class is also stored

in the jump table. Entry and exit errors, if any, are noted before

checking the next jump in DO loop 590. This process of checking loops

is shown in the first three pages of Fig. 9.

The last two pages of Fig. 9 show the process for checking forward

jumps identified by DO loop 590. For this case, all subsequent loops

and previous forward jumps must be investigated to determine

relationships with the forward jump. If the forward jump goes around a

loop, a negative association is made with the loop to show this in the

output. Such a forward jump is still counted as unassociated in the SF,

if it is not part of any other loop. If the forward jump gces around

another jump, there are two possibilities. If the jump around is

conditional, it is simply noted. But if it is unconditional, it is

noted as a possible error, because it could preclude the other 41np from

being executed. This is a useless situation and a logical error. If,

at the end of DO loop 577, the forward jump is not associated at all, it

is associated with itself to show that it is an isolated forward jump.

This is the end of DO loop 590, the loop construct check. Using the

31

LOOP?577 CHECK NEXT LOOP (I'rF8).

JUM N 577 CHECK NEXT LOOP (NF).

BCARS CUJMSAROUNDMJ

y

FiNe9(OTined

FlSOChar fo Chcin9 op o tut
ALSO JUM

32

N

ASSOC NCU THIS PSUEDO ASSOCIATION FOR OUTIPUT ONLY.
WITH -MJ STILL COUNTED AS UNASSOCIATED, UNLESS

ASSOCIATED WITH ANOTHER LOOP.

CONDD584 --HECK NEXT FORWARD JUMP.

UNCOND FWD UiNCONDITIONAL IJUMP AROUND FORWARD JUMP.

< Mi N ASSOC WITH SA ME PSUEDO ASSOCIATION
ASSOC? -Mi AS ABOVE.

Figure 9 (continued)

Flowchart for Checking Loop Construicts

33

information gained here, it is now possible to make a positive check for

nested loops.

Nest Check

The purpose of the nest check is to find nested loops and

overlapped loops. See Fig. 10. This is done by using the loop table as

a pointer to check through the jump table backwards. Each loop is

checked against the previous loop and the outermost loop. The objective

is to see if the range of executable instruction numbers for the

previous loop is a subset (nested) of the others or an intersecting set

(overlapped) of the others. This checking process is done in a loop

called DO 588 as shown in Fig. 11. KC is the loop index which points to

the loop currently being checked. LODES points to the loop having the

lowest numerical destination of those already checked (the outer loop).

To start the check, the last loop is designated the outer one, because

there can be no subsequent loop to contain it. During the check there

are four possible situations. The previous loop may not be nested. The

previous loop may be overlapped with the current loop. The previcus

loop may be nested in the current loop. Or, the previous !ccp may te

nested in the outer loop, LODES. For each of these situations, a

message is shown except for the case when a loop is not nested. If the

nests were checked completely to the inner loop for each iteration of DC

loop 588, the process could become very complex. To avoid this, the

current loop, KC, is checked only against the previous loop and the

outermost one. This requires checking each current loop to see if it is

the new LODES, but this is much simpler than trying to track a nest down

Li.-

34

SEQUENTIAL LOOPS:

Task two comes after task one.

TASK 1 Tasks are distinct. They can

be shown as separate nodes on

TASK 2 the loop free program graph.

OVERLAPPED LOOPS:

NOT NESTED Tasks one and NESTED

two are not

TASK 1 distinct but

converging.

They cannot be TASK 1

TASK 2 shown as two TASK 2

separate nodes TASK 3

CANNOT BE ANALYZED on the LFPG. CAN BE ANALYZED

(ALL TASKS CONSIDERED

PART OF TASK THREE).
NESTED LOOPS:

Tasks one and two are converged.
TASK 1

Together they are shown as a
TASK 2

single node on the LFPG.

Figure 10

Task Convergence and Overlapped Loops

35

LODES = LPMAX FLAG LAST LOOP AS OUTSIDE.

LJLPODES)=-PDES) FLAG OUTSIDE LOOP WITH MINUS SIGN.

O 588 KC)
CHECK THROUGH CHECK FINAL JUMP TABLE

LOP TABLE TO FIND NESTED LOOPS.
BACKWARDS

KC 1? 587 FIRST LOOP IN PROGRAM?

N

NESTED IN 586 PREVIOUS LOOP NESTED
KCIN CURRENT LOOP?

KCLODES 585 IS CURRENT LCP
THE NEW OUTER LOOP?

PREV NOTEPREVIOUS LOOP NESTED
TME ST IN 9982 /

LODES NESTED IN OUTER LOOP?

O5RE WARNING PREVIOUS LOOP OVERLAPPED
WIT COVERLAPPED WITH CURRENT LOOP'?

587 CHECK IF KC IS NEW LODES.

Figure 11

Flowchart for Nest Check

586 NOTE

9982
NESTD

587 CEN.

10FLAG OUTSID STORE CU~rsIDE LOOPS AS
58WITH AS NEGATIVE TO IDENTIFY

MINUS SIGN FO0R LFPG.

Figure 11 (continued)

Flowchart for Nest Check

37

to its innermost loop in a single iteration of DO loop 588. Outside

loops, regardless of whether they contain nested loops, are flagged for

later use with the LFPG. This concludes the discussion of the nest

check.

Final Checks

Three final checks are necessary to calculate SF. Check the final

jump table first for forward jumps with no positive association.

Increment NF for each of these isolated forward jumps. Next find 'L,

the total number of instructions in locps, by subtracting the executable

instruction nunber of the destination from, that of the jt.znp. 7nis

result for each outside loop is added to find NL. This is not done for

nested loops. Otherwise, NL could be larger than NJX, the total number

of instructions. This would cause SF to be negative. Also, 'B must be

discounted for each nested loop to show the nuber of outside locps

only. Prior to the SF calculation, check if NX = "L. In this case,

show the unsuitability for parallel processing (format 9010).

Otherwise, SF is calculated and output with the jump table. These three

checks are shown in Fig. 12.

The jump analysis checks only forward jumps to find those

unconditional ones which circumvent other instructions. This is done by

trying to find another forward jump to the next instruction. If such a

path cannot be found, a search is made for a loop back to that next

instruction after the unconditional forward jump. If no path is found,

a possible error message (format 9493) is shown. Note that in programs

O 9 LT FIND TOTAL NUMBER OF FORWARD JUMPS
CHECK TAEOUCH NOT ASSOCIATED WITH LOOPS, NF.

JUP TABLE

I
(DO 595 NCN COUNT INSTRUCTIONS IN OUTSIDE LOCPS, NL.

LOOP TABLE]

S.2

ICOUNT NL

FLOAT S F
VARIABLES
FOR CALC

S~rrED? Y C ALC S F

" CA

c ont

Figure 12

Flowchart for Final Checks and Jump Analysis

39

596 cONT.

DO 000ID)LIST FACTCR VARIABLES A:,D JUJMP TABLE
6010

OUTPUT ILOOP NO. JUM'P -NO., -O, CLASS, ASSOC.
JUM1P TABLE

(DO 597 bC
OUTPUT
JUMP TABLE
DIAGNOSTIC

O 59 IL) USN949JM3 ALE HWA ITO

22 RE'UNTO ASSC E AS W

N~gr 2(cniud

5lwhr 7 ~ o FiaLCeksad up nlyi

which have vectoring (junp to an address that 4jumos to anoh:ber address

or has its own return mechanism), this will cause erronecus error

messages, because the return is obscure. At label 5964 note 4umps not

associated with any loop. At label 597, the end of the jump analysis,

write the headers for listing the loops. Then find and list each loop

with its associated forward juinps, if any. If there are none, it will

so indicate. This is the end of the jump analysis as shown in Fig. 12

on the previous page.

Loop Free Program Grah

The key to the Loop Free Program Graph (LFPG) is the loco table

which has the outer loops tagged as negative by the nest check. This is

used in the present version to print a notation on the source list

showing the node nunbers of the LFPG and non nodes as dots in a co!1.n

between the junp nunber and the executable instruction nu.nber. This was

shown in Fig. 5. This is done by subroutine LSTCUT at the same time it

is making the source list. This capability is initialized by the main

assembler program by setting MSTOPN to the number of the last loop in

the ju p table. MSTOPN is the flag that suppresses the LFPG node

numbers within outside loops on the listing. When subroutine LSTCUT is

called, the assembler pass two has been modified to determine if there

are any loops. If there are none, it performs normally. If there are

loops it sets a flag, MSTOPN. This will stop printing numbers and start

printing dots at the beginning (destination label) of the outer loop.

It also sets MSTOPD to stop printing dots at the end (jxip) of that

loop. See Fig. 13 and Appendix B.

41.

EXISTING SUBROUTINE LSTOUr WRITES OBJECT CODE FOR LOADER AND SOURCE CODE

FCR ASSEMBLY LISTING. IT IS CALLED FROM PASS TWO FOR EACH SOURCE

ADDD PROGRAM LINE.

COMMONS

/INsT/
/LOOP/

LPX = LPMAX-1 INITIALIZE LOOP LIMIT

CHANGE OUTPUT LISTING TO SHOW LFPG NODES AFTER NEXT OUTPUT LINE FOUD.

LINE? 300 NOTE: LABELS 100 TO 300 ARE

SHOWN IN THE CONTINUED FIGURE

AT yON THE FOLLOWING PAGE.

V7

LAST LOO 200LII

Flowchart for Subroutine LSTOUT Modification

LOOP?

4,2

LOOP RESET STOP FLAGS, MSTOPN AND MSTCPD.

LINPE] RITE A DOT IN PLACE OF LFPG 7VJI" ER.00

S200 NODE RITE THE LFPG NTJiNBER WTH USUAL OUTPUT.LINE

WRITE NOTHING EXTRA WITH T.PE C,MN.

j 300 OM~NT(ALSO HANDLES PSEUDO OPS).

100 UB.400E

LAS NO E? CONTIN E W:TH CRIGINAL

I SUBROUTINE TO "WRITE OBJECT LOAD XCDULE.

LN

Figure 13 (continued)

Flowchart for Subroutine LSTOUT Modification.

-- + , L A ST.. I T O R 1 I IN A L .I I

43

The subroutine LSTCUT has been modified by adding the CONC*I- S INST

and LOOP. A variable LPX is initialized to point at the last loop,

because it limits the loop index used to find the next outside loop. 7t

checks while making the source list for comment lines or pseudo op's.

Nothing extra is printed on these lines, because they have no

significance for the LFPG. The node number is printed on the line if

the executable instruction nunber is less than MSTOPN. If not and the

line is part of a loop, a dot is printed. Else it is the back;ard jUnp,

for an outer loop so the node nunber will be printed, and the flags are

reset. This continues until the last executable instruction -must

always be a node by definition.

The subroutine FEIDLP has been added to find loop nunbers frcom the

loop table when given a jump number passed in the call. See Fig. I and

Appendix B. This is necessary to provide comprehensive diagnostics that

reference both the junp and the loop numbers.

This completes the discussion of the algorithms implementing the

suitability checker, finding nested loops, and printing the LFPG. 7ne

next chapter discusses the interpretation of the suita 'ilit

determination and the diagnostics.

I

SUBROUTINE FINDS LCOP NbMIER OF BACKWARD JUM P, I,
FINDLP (I)

FROM LOOP TABLE. RETURNS LPNO IN COMMON IL2J/

INITIALIZE

LPNO=O

(Do 100) LC FIl'D MATCH ON JUMP NUMBER, IBY CHECKIN

000 LOO N1E OTFUD

Figure 14

Flowchart for Subroutine FINDLP

IV. SUITABILITY FACTOR AJD DIAGNOSTIC MESSAGES

This chapter discusses interpretation of the suitability factor,

SF, and the error messages, warnings, and notes which are a useful

by-product of the analysis.

Suitability Factor

Although SF is partly an empirical factor, it can be theortically

justified as discussed by Ramamoorthy [1]. He discussed the value of SF

0.3 as being a useful cutoff point. According to his observation and

reasoning, a value greater than 0.3 indicates that a program h-as

characteristics favorable for parallel processability. Therefore, the

same value has been used as noted in the output. Further research may

indicate a different value for the assembly language suitability checker

because of two differences between this application and Ramamcorthy's.

These differences concern loops.

Since Ramamoorthy was interested in dynamic scheduling, he included

backward jtunps of unknown iteration as a negative contributing factor.

With assembly language, the predetermination of loop iterations cannot

be made at this stage of analysis. Therefore, the assuption was made

that all the loops are designed for a predetermined number of

iterations. For one time scheduling of the program in the

multi-microprocessor system, each partition will be scheduled to run on

a processor until it is finished. For this reason, the schedule will be

45

I!

46

based on earliest and latest possible task initiation times only; not

dynamically based on how long the partition will take to execute. Cf

course, the execution time must be reasonably balanced with other

partitions, but this is the indication given by the suitability factor.

This is reasonable for nondynamic scheduling, because the final solution

will eventually require some balancing or fine tuning. This would

involve consideration of loops of indefinite iterations such as loop

until interrupt. Based on the overall system, a decision would be made

whether to allocate such a loop as a discrete task or part of a larger

set of tasks. With respect to nested loops, this is a more complex

problem.

Since Ramamoorthy's analysis does not allow nested loops and does

not recognize loops of unknown duration, it really does not consider

loop length except for the caveat that parallel .paths must not be too

long [11]. This is checked by referencing the number of instructions in

loops. Nesting effectively increases the loop length as shown in Fig.

15. Because optimal length is relative to the length of other

partitions, it is not possible at this stage of analysis to judge this.

The number of instructions in the loop is only a rough indication. A

short loop executed many times could run longer than a long loop

executed only a few times. Therefore, it is necessary to examine not

only loop length, but also iterations for the outer loops and any inner

loops. It is not possible at this stage to find what determines the

iteration of each loop and how many times it will execute without

additional analysis. Therefore, the formula is used as an approximate

value. One use envisioned for the multi-microprocessor machine is to do

4?

LOPLNT ACTUAL TASK LENGTH

MANY SHORT ITERATIONS

FEW LONG ITERATIONS

ACTUAL TASK LENGTH CAN BE DE'TERMINED ONLY BY KNOWING ITERATIONS.

Figure 15

Length of Nested Loops

48

experimental program executions to find the best possible schedule or

processor allocation. When this is found, the program would be

considered ready to run on a production basis. One further comment is

necessary.

Although it is not highly significant here to study the bounds on

SF, it should be noted that it is usually positive. But it cannot be

thought of as a positive number between zero and one. It approaches

infinity as the number of instructions in loops approaches the total

number of executable instructions. This is an undesirable situation

indicating loops that are too long. Further research will be helpful in

interpreting this factor for assembly language programs. For the

remainder of this chapter all FORTRAN format statement labels referenced

are shown in Appendix B. They were also shown in Figs. 7 through 14.

Possible Errors Noted by the Analysis

Possible errors noted by the analysis are conditions which may be

due to faulty logic in the loop or jump structure of the source program.

They could cause problems in execution. They are explained here in

order of the format label number. Statement 9001 ,"NO EXIT FRCM BACK

JUMP, UNLESS BY RETURN OR OVERLAPPING LOOP," means an endless loop.

Analysis of several programs showed that this is not unusual for

microprocessor systems, because they are often designed to run a program

over and over. Therefore, this is shown as a possible error. Statement

9902, "NO ENTRY TO LOOP, UNLESS BY RETURN FROM JUMP OUT," means that the

loop will not be executed. This indicates a backward jump that appears

to have been circumvented by a previous jump. This message may be

49

generated erroneously by jumps to another part of memory that has a

return mechanism that is not discernable by the analysis.

Statement 9493, "NO PATH TO INSTRUCTION EXCEPT BY CALL," means

there is at least one instruction which will not be executed because of

a previous unconditional jump. This message may be generated

erroneously by some programs that include vectoring or some sequence of

unconditional jumps with no apparent return.

Statement 9993, "UNCONDITIONAL FORWARD JUMP AROUND FORWARD JUMP,"

is nearly the same as 9493 and in some cases confirms it. 9493 is

generated during the instruction scan, and 9993 is generated by checking

the jump table to confirm that there is no apparent path.

Warnings Made by the Analysis

Warnings are for conditions that have occurred during the analysis

that will cause the results to be incorrect. With one exception these

should not occur unless the source program size limits have been

exceeded. These warnings are discussed in the order of the format

statement numbers.

Statement 9000, "LOOP NUMBER FOR BACK JUMP NOT FOUND," means the

loop was not recognized and stored in the loop table. This error should

not occur unless accompanied by 9991 or 9996. If it does occur alone,

it means there is a fault in the analysis program.

Statement 9991, "ARRAY LP OVERFILLED MORE THAN 100 LOOPS." This is

self explanatory and means the array must be enlarged to accomodate the

subject program.

50

Statement 9996, "ARRAY JP OVERFILLED MORE THANJ 200 JUMPS." This is

self explanatory and means the array must be enlarged to accomodate the

subject program.

Statement 9980, "LOOP OVERLAPPED. SF VALUE MAY NOT BE MEANINIGFUL."

This means that two loops are overlapped. A loop jumps out of a

subsequent loop which jumps back into the former one as was shown in

Fig. 10. Unless these two loops are both nested in a third loop the

LFPG will be in error. The analysis could not accomodate two nodes

which partially converge or are not discrete and distinct. If the

overlapped loops are nested in another, all three will be treated as one

task for partitioning, and the overlap will be inconsequential. This

version of the program does not make this determination, so all

overlapped loops generate the warning.

Statement 9999, "UNCLASSIFIED JUMP," means the jump type or loop

class was not established. It indicates an array problem or fundamental

error in the suitability checker. This error should not occur.

Notes Made by the Analysis

Notes are for conditions discovered in the source program that are

not necessarily wrong but considered essential to emphasize. They may

indicate a problem, but will be informative in any case. They are dis-

cussed in order of the format statement number as shown in Appendix B.

Statement 9490, "FD JUMP IS NOT ASSOCIATED WITH ANY LOOP," means

an isolated forward jump. These are detrimental to parallel processing,

especially if conditional.

51

Statement 9903, "CONDITIONAL FvID JU iP ENTERS BACK JUMP FROM CUTSIDE

ITS RANGE." This could be an error, or it may simply be a way of

entering a loop.

Statement 9990, "JUMP ALSO JUMPED AROUND JUMP." This indicates

that a forward junp went around another jump subsequent to the one shown

in the jump table. It is not necessarily a problem. It supplements the

jump analysis, because the association can only be stored for one jump.

Statement 9994, "4FD JUMP AROUND BACK JUMP." This shows a jump

around a loop. It may indicate a problem, if there is no other path to

the loop. This is a precautionary note, because all information was not

available at the time to make an unqualified error identification.

Statement 9995, "CONDITIONAL FWID JUMP IN BACK JUMP, BUT IS NOT

SIGNIFICANT TO ITS STRUCTURAL CLASSIFICATION." This indicates an

interior juop has been found that is not a minimum requir-ent of pr eoo.

structure for classification purposes.

Statement 9997, "FC dARD JUMP ALSO ASSOCIATED WITH JUlP." 'nis

indicates a jump out of an inner loop of nested loops. According to the

analysis it would be associated with all loops it ju.ps cut of.

However, only one association can be made in the jiunp table.

This concludes discussion of the available diagnostic factors,

errors, warnings, and notes. An example program listing showing some of

them is included in Fig. 17 in Chapter V, which discusses actual

experimental results.

=77

V. EXPERIMENTAL RESULTS

This chapter shows actual results achieved by using the suitability

checker on ten microprocessor programs. The first section discusses

these results and the second section explains the output of a sample

program run.

Findings

Eight actual INTEL 8080 programs and two pseudo programs (two test

cases written for this research) were analyzed for parallel processing

suitability. The results of applying the suitability checker to these

programs are shown in Fig 16. Probably the most significant finding was

that most of the programs were suitable except those containing

overlapped loops which were not nested in another loop. The one

program, NONDIGIT, which was unsuitable, because of its long outside

loop structure, was found to be highly suitable when the outer loop was

removed. In one other case, TEST P24 11, when the outer loop was

removed, this exposed overlapped loops rendering the program unsuitable

in that context. Programs containing exposed overlapped loops are shown

with an asterisk.

Also the results are shown in parenthesis for an earlier version

that neglected to discount nested loops from the loop count. Although

this did make a difference, it was almost negligible for the programs

tested.

52

53

CM U

C. o r-) CMCn o- m
-O t - - -n CQC _ .

C

. *0

0 0
0

C)

0~ ~~~ .- C -0-

4- 0

0C C) 0 00

0 M C~l' 0- -O U- t--- Lco 0:L-,: 0y-
M 0.o N- -Y (. - -

CD -;(C

00

C) C

0 ~ -- 0 0 cog== --

co L) =- JCL C
0- 0= 0L 0 0 0 0

-4 Q-g = L C

LL] C= ~ 0 =U0C '.00L LC tu 0Cw 0Yl a

C/) WL. -40==-U

R C/) 0L- -L l z ULX E- L
Zx

0~ C.I Q

c, r) a. zc in w - ~ a
in -E-L.C 04 C) ~

~LL 0- =d. _ L C

1

54

It is significant that the checker can be used for parts of

programs. Although assembler errors will be generated, the analysis

will still be completed. The next section tells about the results shown

on the program listing.

Explanation of a Sample Program OutDut

This discussion deals with the listing shown in Fig. 17. The

entire figure is nine pages. The format of this output is the jump

analysis followed by the INTEL 8080 source program listing and symbol

table. The jump analysis was output first, because it reveals

information about the source list. The source list must be referenced,

however, to use the analysis. This reference is made through the jump

numbers which are shown in the jump table and on the source list under

the column label, JUMP. See Fig. 17 (cont.) on the fourth page. Both

jump numbers and loop numbers are given in the analysis.

The analysis format begins with the errors, notes, and warnings

generated by the loop construct analysis. This particular example had

no warnings, mainly because there were no overlapped loops. This part

is followed by nesting information from the nest check. Then the

suitability factor is shown, which is 0.35 in this example. The values

of variables used to calculate SF are shown over the top of the jump

table. See Fig. 17.

The jump table format is the same as explained previously for array

JP. The loop numbers for backward jumps have been added to the left

side. They are followed from left to right by the jump number, its

executable instruction number (both shown on the source list), the

executable instruction number of the destination, the forward jump type

55

7L ~ J~ ~ s VE E3' 3:- V7; 72

,-':r q'nr ' jj , :'3 *ZC< JUMP " (L.C7 *J T
'JT T y " T 'I) . ' TO VT ST E'JCTJ L L ;C:vrc r: '.

• ,"'-. ".~ ., r . jIM'O. T'" 313(. JU'i ' t (LC& i),iNT 1 S T 1 r'.1 TO ST:'!JCT!"AL CL: S3 I, TC i
P7T T" TO -Ttz ST7U TVj C-"L0L

,4= - IC E(IT P: 4 ?ACK J!J'AP 7 (L CP 3)-I!Z.] yv -rL~ i ; J TPU:TT"... ' OR C VFR L. 0 P C3
T 7~ j ZJ~ JlFj3TO' L ~ CV!~ .0 E2.

S jLJ .SL O ASSO NITW JLIVD 7.

) T - j, 'I4 C) C -L SO SSO W TH JULMII 7.

C * 7 JJ P . -IL SC O W4Tw JUMP

"''T-. L I-P E-7E' : : LO -"

'I,'!. T. ., , ft. I T' y CT -: "f'c D-' dLL:_L 0# r S ,, _ c ?"
!(V j n £T THa;, 2.3 1s tAVC LE.

J' TA.LF

.JIA ' NrC H ,'.3 h: " ,TL LF

L~~~ o J!J3 L-', 1:] TYy A

- 77 L" "7 7

r7

i z

7 IA.

."" ::e : ' _ ," .

Figure 17

Sample Program Output

i

56

L-,OPE j" T'4± P,CGR AI G

J:L1 L b "55 2
-J j JJ1 r3 S-,GIATE vIT - LJ.-

JU., 1, £ .ST- C;O 5 75

JUIP 2 :;.ST NO. c 6

. ")7-: .3652
FC', - JJMP .. SSCCT TED .T- "

J U Mp E Y 1.ST U y u77

F Ju'I P S " 3Suk.A TED ,:T- .U-

SE,3n 3

FL.' .- O JU"'3 a S-3C 4TE3 'T L.-.--

-3 NEC

C f'I .1CH E, I L.PG EX NC L .E L.

*,OF NL..MC-,KLi.I - T P A! 1 H
3 D rS S ES ~F ~Y T C .3E CH EC< . T-i7 H-', T E'. -

A C t.U."t E S T H T I A-.T E .- T E - 4r1 L-.'-Q 4 ~ -. y*. F A I:.N4
Z ., 6 IS F.LLEO. THE OI3 A1~ LL >,ErC T
FLL N,JL ZE i Am jT uT A:4 ~\J -'S. j-IE T~ L
U E 4 E S- 4P~-14 3 J T HL-AZ F :4 -L <

i ,~ ~ F:- 4.-EPJU rEPS & .. TE5 ,-Z.Y ."

I S P

.~* C H ft. ' P ',LIPTS*J EJ.TE-. EX - L,.F D. ;" , .E-, J

S 4

P F-C . '" I-.P T : ',-TE- I. .I u£IT" T - T-, 2Ut TA I E

UX S2 E aNS X

' "- u_1"7!Y .4 F ,LE'JO S DI F 1 JS ' 6S T 3 -E K : [T 1

A Lim'- 3sG iJEjC / 'IE L'E -k Y 4

Figure 17 (continued)

Sample Program output

L k C :P "PS ;Tr .,'ZLF 1" . E .:K3

57

' ," ; Cm 3]J E JU'" A.r- .. . L..,- L . ' L ,

.. U 32, 4 3 2 l .,1 ,.x LP,:'L"U

UT L A N j- Z3 s

4)

, F '2 27 .2 6 x" ,

2 CO 53 '7 7 . T

,. 7 C:3 ' -c.= : _]

4

" ' 3.., 27 O21. 2- " ,.

. 6 .. C •7 .4-z .. _ ,., 'E-T.-"3.. .
C ; ' ,, _ 1 , _ .4. . '-

Z 7

-l3 G 3 7 .
7 3 7.- T. .2. .,

2

.7E r, 0 7 2 .P L.;_ VET
' .1 32 23 2 T"

A 7 21 e E ,u,2 >.d ! , "
". 1 C3 D 7 c . v , -. T'

"-- 3,- 2C .,2 7 27 i

S ',it-1T E : FT FC--, . N",''jv 2

3

C9 :3 3 E"' : CO £.F ,." =" - .

43

. jT t) 1. ',J A "S T C ..- 5- T

, - F C' 6 02 7 R'* ' 3,. _
- C CD 65 1" ,3,S .; . .. T

,."' .* E35 35 5', . C, 26

a r C ", ,,.b3e. .,. C'3~~~~ ,,,m .: 77 7X t U'2.

.:.CF ,]6 5 U2 1 3,6 35 ' . ,
3 ET

Figure 17 (continued)

Sample Program Output

58

MACH, LO E JJ'- JFG , :.A i ,

C f. ,¢ rT ,iU.:i TO u s E YT E.

44

2~ 22 5~ .

4 2C :: a' " - -+7 4-

: Co t7 - ;E . .T
22 '4 t 2 -.. t 3-7 7- "-*- £

.. T L£5 2u . 5 , .

4

,.1

r F r . 3Z•o
! .= C . .. I' "",-" £.-

I . ' . C] A . - ".. ID,-

C 3

,*. C, .TC'.. 1 * ,E .2 7'JJ Z,

U1;7 7T "
7

73

C C L' - 3 o

'~.; C *-,., 7 L'. T . ',u,~ r76 ,. >]- Y,. .. r

E T * '~j~%. T T ~ E
42

3- 7 72 u1:. . 7UK"C 7-

7,: CC 5-3 71 T7

1 2 F 4 7- . -i

Figure 17 (continued)

Sample Program Output

59

or loop class, and associated jump. For this example jump I goes from

executable instruction number 57 to 64. It is a type 6 which is

conditional forward as confirmed by the source list where it is shown as

JZ ENDER. This jump is associated with jump 3 which is also loop 1 at

executable instruction 63. The label ENDER is shown at executable

instruction number 64. Therefore, jump 1 jumps out of loop 1. Also, as

the analysis shows, jump 1 is associated with jump 7 (loop 3), because

loop 1 is nested in loop 3. Therefore, jump 1 is part of both loops,

although the jump table only shows the association with the inner loop,

because of the way the table is constructed. At the bottom of the

table, notes and errors derived from the final jump table analysis are

shown. In this case the only note was that jump 12 is an isolated

forward jump which is not conducive to parallel processing. Following

this, the analysis concludes by listing the loops and their associated

jumps. This is the same information as the jump table, but it is

arranged with respect to loops rather than jumps. Also note that jumps

such as 8 and 9 are not shown as associated with the loop, because they

are not significant to the structural classification of the loop

containing them, loop 4. In other words, they have no influence on

program flow into or out of the loop. Therefore, although the loop list

might be considered redundant, it is interpreted in a slightly different

manner, for convenience in determining loop structures. This was done

for possible later use in analyzing loop iterations. It would be easier

to decide which jumps to examine, given that some of them are not

structurally significant. Using all analysis information assists in

examining the source list.

F

60

-- ,T- T L - SS -SSEM. - . . . 2. .-. , " -
-c C AC C .E JJ"M .LJ EX ' L4 3EL T .

Sw r. .i. 1 0 j 2 T.E N D0 C, I- T .i

3A , + * E 432 L J U
-114 2 ,6 J , 31 ,1LJ Iu .:2
.117 32 " ' 22 * 52 3T, U 2
,UA 22 - 3 2,2_2 %UQtO C3 [03 .[7 54 4J'' .EP

CLLAONCSTI QETEC-^TED

-12? C0 PF C1 55 £,- ,.F
123 CD 3E 0,. 56 M5 S A

- 26 1 13 2 57 z 7 .Xi 3,.LK5
129 C 0 :3 1l 53 A i %

.12C 76 5
1!2D0 9 -r0 rl VJ E -_ j , -- T3

.130 1: 3 L L- <1
,133 Ct L3 01 62 j2 C, P%2S
.13c 7E 63
"137 C3 0 1 0 r- V T 3
:3 CD 5 ,, 65 95 ,.._ U i£T

.3 C9

* LUTPUI ADO-.ESS ,U"-E

13' , 67 7

! C,] 7OO!5 lU * .,V T1 5 4 F 7, 13 a" 01 go, L"1 , vE-T

5 CD j 72 122 V T

cCC NT H I. T' ,E 0 Y

I. - "21 27 12 74 i, -_S.T E.
1 01 23 75U '4E FE 77 127 "3 ."-

.'!,F E3 7 12I 50 7,' 46 3 7 j I] IC E _1 ' .,J:

r4 r153A 4':0 l ,

- i7 57 52 1 - 1,-
1 _ - : -3 113ET
SCCi-rA.;E CU .ET 4UL)RESS TO .1

i 5 9 3. 2a ",9 I 1- L.4ST . -
'.1.5 C ': :5 2.15 3.J; ri
-.5 J CL
o 3 E 3 A 2C 62 87 117_,. - .'.
.161 95 o 118 3.

.16;" C9 11' ET

CNvE 7 ASC..i I P uT TQ INArY - UIV L7'.T,

C16;3 U b Ui :U 12, C'-jN4 E tT: "1 -,'3

AbS CO -3 -3 . 121 .<.T
C1e .o 7F 1 122 -:'. >' '

Figure 17 (continued)

Sample Program Output

I6

61

-- T E- - CJ LJ A E M ::L - ,E, 7 j -

32 T.I 32 - 2 * 23 T TEP
-160 4.F " ,,j
".CE CD 49 F 125 ,

Ji7L FE -127 x .

176 F 7E C1 1 12b J; x:

* CHA-ACTE.; 1S 'u " TO 3
7

:17 = C3 9" u: • 132 JC; xx:

CH4-ACTER IS F.,'". A T F.
:E '1 E 37 X 31 .. 3'.L Q37'

-C :'2 132 XXI T
J1 13 * 133 7~

i: 2 L 5* :3!;-3 C, ul: J 1U J447 JFXT
i 6 C 2 435 -E;

* ACK Two 3YTE S T,-' CNE 6Y T .

7 7 137 C'JE- T .

, U? -5 3-
jA j,?.;1.9 &;3 -1.o I--

14

JNFLCK vE CYTE I NT3 T,,0 ES, ECHQ . T -.. F
4 :'. .. T' F. THE r C ,VE, T EC TE :3 I--- 1,T JT.

'0 32 4- 3 C ,4E T3 T:. T:. E
,.1 ,. 143

11" 0. 42O I15 1 5 4,:

.,.C E1 jF 7 :51 3.

: C 1 53

CCjNVEKT 4h,, -Y TJ -Sdi AD fUTF JT

21A2 FE ,' 110M 154 C.N E:Tt v
1.A2 F? E '.1 111 15- JC 3,2

i CA- 2.CTE' U F,,. 2"10 2

11 A7 Ct) 3J 2l 5' . x';C149 C3 AE J 1 2 113 1.j7 J'i x.

SH4-,ACTE IU M TJ F.

wIAC C6 37 11- X 6J 7j IA F -F" 115 x5- %x "2O '1
L I F Cr I .. C , 411b i6 - .. C

- - C9 ;.17 161

Figure 17 (continued)

Sample Program Output

At ' -Il l I I I I r

62

!NTEL eA CROSS ASSEM-LE- VE-1 Z '1 DEC 79

C -MACP COOE JJ,'c Lr'PG EY yC L A3E L ! S T COE4;NCS

SUq- nUT',NE rC W ,TE OUT I-ESSAGE
I.3 14 9 162 N ESs LJ)4

i3 FE :1 * 153 COT XfC'
1j6 Cd 8 ;"*7

1i4 7 P~ 16 F 6v C,.
11 C C .3 F~ P ^6 ALL CO

M'I'3 13 167 ;.4y0
'I 3C C3 2e3 U0 13 1Z& 1 I J"D ME3S
*SUB:OUTINE = C N -AGE E TU RN, L.INE :EE:D

,1101 CC 9 F ~ 12L 17C CA LL CO
I C L i'E' 121 171 09 C) 'A'
~1C C-9 F Q 1:52 172 CA L G O

* P-:CrG6Ati E~SFCNS E 3

ic 3 4 t ASO 4-
54-' 4s, 1S ,T

1Fs C 1I
1 4C SI IL4F sc Ic

3)2 2C sc I,

7I)6 iF A 3 .C

A SP

i 30 52 iSt sc I
111E q~ L s^ 1 y

)E~ 5L~ ASC ,T

U.~ L sc 1 E
61ES 2 ~sc I
'IF5 43 ~C :C

.~~.:cs I -C
0IC HEY
IE 45 PMT2 ~ sc 1,E

1 F 5- .sc I ,T

C2 52 Asc ,

I Fi* '4E A5(.

Figure 1? (continued)

Sample Program Output

63

The source list closely resembles an ordinary assembly language

listing except for the addition of the columns for JUMP, LFPG, and EX NO

in the middle of the page. This example listing in Fig. 17 was slightly

modified to fit the margins by deleting the line numbers which would be

on the far left and bringing some comments from the far right to the far

left. Also, it should be noted that the symbol table is unchanged from

the original. See Fig. 17 (cont.).

In designing the program output, consideration was given to using

the program address counter or line numbers for analysis reference

rather than executable instruction numbers. Although the executable

instruction numbers had to be generated in the program, they were easily

added and are much simpler to use and reference than either line numbers

or program addresses. Line numbers are not definitive enough, because

they include comments and pseudo ops that have no bearing on the

analysis. Program addresses are harder to work with, because they are

hexadecimal. Therefore, executable instruction numbers were used and

shown for the listing to clarify the analysis.

The final product of the analysis is the nodes of the LFPG 1.rhich

are shown on the source list between jump number and executable

instruction number. These numbers can be considered a map of the nodes

of the LFPG of the microprocessor source program. The only part missing

from the graph is the edges or arrows between nodes. These can easily

be determined by looking back into the jump table where they are shown

in the FROM and TO columns. B-" looking at the LFPG nodes it is easy to

see the outer loops which are considered as a single node or task.

These loops are shown by dots instead of numbers to indicate a series of

64

"T'L . C-CSS ASSE'4 "LE:. _- _ DEC ' -

' £ " ,0 H OG.- JJ'' J,, E , E.

F7 3"
IF 2C

1 FC 3 Z -S,

L;FF .p -.

,j2 2 + 3 f4 F '421.h4 .. -.5 - S

2 5 54 T

#4

L .7 -43 133 .

33G +8 53 S i,.

2 12 2

I U*

J -2 C,

2 0 3k,
4 F

., - 9-

3 52

3 3F 93 Y. I

:2 2 3 23 - .,

.;23 2 , 2,g 2

. . .. ' ;% "--t.. ,

32 2~ b ~

21a 7 , Lu L,,

"2'.7 , S. ',.

2uA 2

Z 2'5. F . ., SC

J 2 43 S "T,] %,Y

C' / 2C5144"S

L;UA 2 ." 2

:23 2:, 8 3-C a

TEMP2 . SI
4- T

Figure 1? (continued)

Sample Program output

65

-' - U-..

t-r"; ' -. ,-

C. r
r r' " -

- .;:- :-

r r Z' T I'. u

L~ T

L C '27
L r'C,-- "r

L - "-:rrIL
iglure ?"(ontiued

Figure 17 (onrm utpu

3am'l Prora Output

66

instructions in the loop considered as one task. The node denoting the

loop is the number corresponding to the backward jump that forms the

loop. This information represented by the LFPG could be used 7s input

for a slightly modified parallel task recognizer as discussed

previously.

For clarity the actual LFPG is shown in Fig. 18. To be used with

the parallel task recognizer, this graph would be used with task

transition information to construct the parallel processable task graph

as explained in Chapter II. There are only 54 nodes in this graph

because nodes 55 to 123 are actually parts of subroutines as shown on

the output list in Fig. 17. Note that loops four and five are contained

in these subroutines. Therefore, they occur more than once. This

indicates that it would be desirable to build a table of calls and

returns to cross reference with the jump table for finding loops nested

due to calls. This would also improve error diagnostics as mentioned in

the next chapter.

Other specific observations relate to this particular program. it

points out the fact that the suitability checker is limited to

recognizing input and output by the IN and OUT instructions. It is

obvious that this program has a good balance of I/O and internal

operations. However, the I/O is done by subroutines (in the read only

memory) which are known to this program only as CALL CI or CALL CO.

This would appear to be a positive factor for parallel processing in

this program that is not discernable by this suitability checker. But

there are negative factors that are subtle also. The internal

operations are too closely associated with the I/O, because the checking

67

NOTE: All node numbers refer to Fig. 17 LFPG numbers.

NODES FUNCTION

INTERNAL - Load Stack Pointer.

OUTPUT - Prompt user to enter HI and

L limits for memory check.

6 7 8 9 1011 INPUT - Receive HI and LO as four

Contains Former Loop 4 bytes.

1INTERNAL - Convert LO and HI to

1machine language memory

0 21 2addresses.

2OUTPUT - Prompt user to enter NUM1 and

e 5NUM2 for memory check.

32 3 34 35 NUM1 INPUT - Receive the numbers as two

36 3? 38 39 NUM2 bytes each.

Nodes 34 and 39 each

are Former Loop 4.

40 41 42 43 NUM1 INTERNAL - Convert each number to one

? NUM2 byte.

48 49 50 51 52 53 OUTPUT - Display header.

Former Loop 54 INTERNAL - Fill memory with alternating

Contains Former Loops 1 and 2. NUMi and NUM2 from LO to HI,

Contains Former Loop 5 by call check, exchange NUMI and NUM2,

if error detected, and repeat.

Figure 18

Loop Free Graph of the Sample Program

II

68

done by the process in node 54 used the same variable names for HI and

LO as the input portion. This is an obvious conflict that could be

eliminated by using a buffer, if the programmer had been thinking in

terms of parallel processing.

Although it is necessary to use the parallel task recognizer to

find the optimum partitions, it is obvious that the program could be

simply partitioned between nodes 53 and 54. That is, one processor

could do the I/O and preparation while another checked the memory.

There is a possible conflict between the I/O and the ERR routine which

uses the MESS and CRLF routines as shown in Fig. 17. This would happen

if in error were discovered, which would direct a diagnostic message.

This could be overcome by letting the memory checking processor

interrupt the other processor to perform the diagnostic message as

discussed in Appendix A.

Another point to make is, that for parallel processing, it might

have been better for the initial prompt to have requested all necessary

information which could have then been processed in parallel. This

clearly shows, that the programmer cannot be disregarded. Programs

written for uniprocessors will necessarily be limited in parallelisms by

their structure. But improvements can be made by processing portions of

these programs in parallel. However, one of the most needed

improvements is to emphasize the need to program for parallelism rather

than sequential processing. The next chapter discusses conclusions and

recommendations.

VI. CONCLUSIONS AND RECOMMENDATIONS

As the concluding chapter, this discussion will emphasize the

significance of the work, general findings, suggested complementary

work, and use of the multi-microprocessor system.

The objective of this thesis was to incorporate suitability

checking into a cross assembler as a step toward the goal of assembler

scheduled parallel processable program partitions for a multi-

microprocessor system. This objective was achieved by solving the major

problem of detecting loops in the microprocessor assembly language

source program and adapting Ramamoorthy's suitability checker for use

with assembly language. The additional diagnostics for structural

analysis of the source program were an additional benefit incidental to

the problem solution.

Significance of This Work

The research reprorted within has important implications for

further research and for debugging existing or developing programs. The

suitability factor, SF, enables an easy meaningful estimate of potential

for parallel processability of the subject assembly language source

program. This gives ready indication of which programs should be

subjected to further refinement such that they may be efficiently

executed on a multi-microprocessor system. It enables finding the nodes

of Ramamoorthy's reduced program graph or loop free program graph (LFPG)

69

V -w - - °- • -..

70

[13]. This is a task model of the subject program where all outside

loops are considered as a single task. The actual graph can be

constructed from information available on the output listing of the

analysis.

The analysis of an assembly language source program does not

require any of the large square matrices used by Ramamoorthy's parallel

task recognizer before having some assurance that there is indeed

potential for parallelism. The arrays that it does use are not large

relative to a medium sized computer system. See Appendix C. They could

be compressed by superimposing some arrays on others, but the saving to

be realized is not deemed worthwhile compared to the increased

complexity that would be required. The presented version actually

combines the capability of a suitability checker and Phase I of

Ramamoorthy's parallel task recognizer [14]. The information from the

LFPG could be combined with applicable task transition information and

subjected to Ramamoorthy's parallel task recognizer to obtain the task

partitions necessary for parallel processing.

Ramamoorthy's suitability checker program differs from this one

with respect to loops in two ways. His program did not allow nested

I loops and did not recognize loops created by backward jumps or branches.

It dealt only with DO loops [11]. This program recognizes three classes

of FORTRAN-like loops in the assembly language program as well as nested

loops. It finds and notes overlapped loops which may be detrimental to

parallel processing. The ability to recognize loops will aid further

research in the area of determining program segments which may be

executed in parallel on a multi-microprocessor system.

71

Diagnostic me~sages output with the jump analysis and source list

have never been avaii.able before for microprocessor assembly language

programs to find endless loops, find loops with no entry, find nesting

errors, and analyze program flow or structure. Although the diagnostics

have some conditions associated with them, they will prove generally

useful for debugging or analyzing programs. Programs that use

"vectoring" will generate erroneous error messages, because this

analysis does not trace the vector. It would be possible to improve the

diagnostic capability by building a table of calls and returns for

tracing flow vectors and giving more definitive error messages. Error

messages for loops with no exit must be regarded with program design in

mind, because many microprocessor program designs purposely include

endless loops due to their dedicated nature. These diagnostics actually

tell more about how the program is structured than whether it is

logically correct. But they do provide objective automated analysis,

and will point out some problems. Using the analysis has already

revealed some general conclusions.

General Conclusions

The suitability of an assembly language source program for parallel

processing still depends on the programmer to a large extent. This was

readily shown by the sample program in Figs. 17 and 18. Even when using

implicit parallelisms the programmer cannot be disregarded. The same

process coded in different ways will have varying potential for parallel

processing. Using this suitability checker could help develop

guidelines by evaluating different approaches and selecting the best

one. As a software design tool, this suitability checker could be used

A

72

to encourage programmers to look for ways to facilitate parallel

processing and displace the habit of sequential programming. Some

initial guidelines follow.

Of the programs analyzed, those which had the best suitability

factors had simple closed loops, often with no exit. This supports

Ramamoorthy's findings that complex decision structures are not

conducive to parallel processing. Conversely, a system with a simple

loop could be set up to use one processor for an input/output driver

while another handled interrupts or did calculations.

However, research showed that some programs which had a poor

suitability rating could be broken up into subportions which showed good

potential for parallel processing. This was especially true for

programs which were written as one large loop where the back jump was

located at or near the end, and the return was at or near the beginning.

If the program is one large loop, the SF cannot be measured except below

the level of the loop. See Fig. 16. This is because the loop is one

task, and the analysis will yield a SF approaching infinity as NX - L =

0. Also if the program is one large loop, some problems of parallel

processing are masked. Forward jumps not really associated with loops

will not be recognized as such, because they are contained in the large

loop. This suggests guidance for using loops in assembly language

programs.

To facilitate parallel processing, programs written with a main

loop should be designed to balance the loop with other tasks. Put only

necessary code in the loop, so it is not too long. Any task or process

that can be put in a subroutine can probably be handled by another

73

processor. Also, if any overlapped loops are used, try to nest them in

another loop. More guidance of this type could be gained by analyzing

more programs using the suitability checker. Many questions, as

outlined below, still need to be answered.

Suggested Complementary Work

One of the most important questions remaining to be answered is how

to implement the remainder of the parallel task recognizer for assembly

language programs. This could be done in an interim pass between

assembler passes one and two. It should not be necessary to change

Ramamoorthy's recognizer significantly for this. The most difficult

task seems to be that of automating the analysis of task transitions

necessary to develop the parallel processable task graph for the

assembly language program. This was explained in Fig. 1. This requires

finding the links between each task and the next task that uses memory

used by that task [12,14]. When this has been done the task transition

graph and the loop free program graph could be used with Ramamoorthy's

parallel task recognizer [111.

The next question remaining to be answered is how to load the

parallel processable portions of the program into separate memories with

synchronization primitives as aids to interprocessor communication and

scheduling. These would need to be based on the earliest and latest

task scheduling times derived from the parallel task recognizer for each

program partition [14]. The assembler could append these primitives to

each code partition and configure the load for two separate memories by

using two program counters. Some trial and error balancing might be

required to optimize the process allocations to each memory. This would

I

74

be important in the development of a multi-microprocessor system. The

schedule or processor assignment must be tested and optimized for

production execution.

Scheduling Considerations

Lorin described a streamlined machine with specialized individual

processors for scheduling; execution; and load, store, modify, or

transfer operations [10]. However, such a system would require breaking

assembly language instructions down into fragments at the microprogram

level. Also it would require that each processor have the capability to

directly load and manipulate registers in the other processors. This

might be advantageous for a dedicated design requiring very high speeds.

But it would require detailed analysis and many design compromises

without the probable return on investment of ' more generalized system

using standard parts and having more possible applications.

A simplified version of a dynamically scheduled system could be

built using standard processors with shared memories. This was the

initial attempt at solving the problem. Initial research showed that no

particular machine is better suited than any other. However, the

NATIONAL SEMICONDUCTOR family of IMP, PACE, and SC/MP machines looked

promising, because they have built in control signals allcwing

"daisy-chaining" interrupt type communications. Also the IMP is

microprogrammable and uses the same instruction set as the PACE.

Therefore, an investigation of the scheduling problem was made for the

PACE, so that the results could be applied to microprogrammable

machines.

75

The results of this are shown in Fig. 19. Even by searching on a

priority basis for the most often used instructions first, it will take

from three to ten instruction cycles to recognize the instruction and

jump to a routine that can handle it. Even using a more sophisticated

sort would take two or three cycles. Therefore, a microprocessor

operating as the scheduling unit for an application program would become

hopelessly bogged down as it tried to assign individual instructions to

the other two processors for preparation and execution. This would

create a serious bottleneck at the outset without even considering the

problems of memory contention, processor communicaticn, and

synchronization. After this initial dead-end in the research, it became

apparent that a different approach would be necessary.

It seemed that the dynamic approach was not only too slow, but that

there was too much overhead at execution time due to all-the instruction

fragmentation and transfers to different processors. Reflection on this

problem led to the conclusion that if all this overhead could be

taccomplished beforehand, operation would be more efficient. The only

logical time to do it was before the load. This left the assembly

process as the only possible time to do the scheduling. This seemed

compatible with Ramanoorthy's work 11,11,13,14], because it would be

easier to schedule and synchronize partitions or blocks of instructions

with less overhead than it would for fragments of individual

instructions. It was only a question of how to find the parallel

processable partitions, their execution time relationship, and the

necessary primitives to synchronize them. Therefore, the problem inves-

76

-:-I I "-pTF " 0 -. It:!: TT
Y -- -- , - -.rT:".ST

_- ,' L , - , (- L , ; . - ,-

J -

J C 'Tr 7 4) T.7 -

Jr

J , C,p

,,°c

44 v . T, T 73

S , -4 Yv

C T -w" M 7

J. C -x
J" "'"h' - ,'" .X

At 4 -L r

- z 7 T 2tx
j < ' - 4 i Y
J"' % e ' -- -,rT

L4 7C , - 'r T L,JOI

j~~H C 14 ~ ~ 1JL L'T- P S 7 P

T (l cr);. r Y T .T, 7C "r T,% / -

* c j'(c -- T: '--_7Y J7T ~ ~~

*-- - r, *n - .C'-vyy ", T.," - E (LE'iT It} .T) .

Figure 19

PACE Instruction Decoding Sequence

77

tigation proceeded on this basis. The suggested configuration and use

of this system will be the last topic for discussion.

Configuration and Use of the

Multi-microprocessor System

The multi-microprocessor system should be a generalized design

adaptable to dedicated tasks depending on the application program. Two

broad system classes would be development systems and production

systems. The former would need additional capabilities for editing and

manipulating memory while the latter would be more specialized according

to the application. The associated equipment would be determined by

user requirements, but both systems would have the same basic design.

This generalized system should have two or more processors with a

common read/write memory and a private memory for each F12. 7he

private memories would be read/write memory for a development system and

read only memory for a production system. Program tasks with

synchronization primitives would be loaded into the private memories by

the modified assembler. Processors would communicate using "mailboxes"

(I/O ports) which would indicate messages in common memory [2,41. See

Appendix A. The individual processors would not need to be highly

specialized unless this proved beneficial to the particular application.

Adapting the methods used here to any particular microprocessor

language should not be difficult for someone who understands the subject

machine, its op-codes, its instruction set, and the set of modifications

made here. Although much work remains to be done, systems of this type

are both feasible and useful. They can be developed relatively

inexpensively for either research or commercial application.

BIBLIOGRAPHY

M] M. J. Gonzales and C. V. Ramamoorthy, "Program Suitability for
Parallel Processing," IEEE Trans. Computers, Vol. C-20, June 1971,
pp. 647-654.

[2] P. Gebler, "Linking Microprocessors to Increase System Throughput,"
Electronic Engineerin&, Jan 1977, PP. 52-56.

£3] R. A. Perrin, "High Level Languages and the licroprocessor,"
Electronic Engineering, May 1977, pp. 65-67.

[4] A. J. Weissberger, "Analysis of Multiple Microprocessor System
Architectures," Computer Design, June 1977, pp. 151-163.

[5] W. L. Spetz, "Microprocessor Networks," IEEE LCmpu _, July 1977,
pp. 64-70.

[6] K. Rozsa, "Multiprocessing Boosts Microcomputer Power Drama-
tically," Electronic Design, Vol. 6, Mar 15, 1978, pp. 72-75.

[7] T. Doone, "Microcomputer Multiprocessing Increases Throughput,"
DiitajlDeLi, May 1978, pp. 102-110.

[8] "Advanced Software Systems Design Course," (Editor's Tutorial),
Electronic Design News, Oct 20, 1979, pp. 294-336.

[9] Y. P. Chien, "Multitasking Executive Simplifies Real Time Micro-
processor System Design," Computer Design, Jan 1980, pp. 109-117.

[10] Lorin, "Moving a Single Processor System to its Limit," P2ral-
lelism in Hardware and Software; Real and Aparent Concurrency,
(Englewood Cliffs, N. J: Prentice-Hall, 1972)

[11] M. J. Gonzalez and C. V. Ramamoorthy, "Survey of Techniques
for Recognizing Parallel Processable Streams in Computer Programs,"
Fall Joint COMPCON 1969, AFIPS, Vol. 35.

£12] A. J. Bernstein, "Analysis of Programs for Parallel Processing,"
IEEE Trans. Electronic ComPuters, Vol. 15, Oct 1966, pp. 757-763.

£13] C. V. Ramamoorthy, "Analysis of Graphs by Connectivity Considera-
tions," AC Jral, Vol. 13, April 1966, pp.211-222.

78 4

79

[14] "The FORTRAN Parallel Task Recognizer," Final NASA Report, Grant
DIGR 44-012-144, May 1970.

[151 T. F. Fox, Hon F. Li, and C. V. Ranamoorthy, "Scheduling Parallel
Processable Tasks for a Uniprocessor," IEEE Trans. Computers, Vol.
C-25, May 1976, pp. 485-495.

IA

APPENDICES

80

APPENDIX A

SUGGESTED INTERPROCESSOR COMMUNICATIONS

81

82

This is a brief discussion of why interprocessor communication is

necessary, how it could be accomplished, and how it could affect machine

design. The two main reasons for communication between processors are

resolution of conflicts between common resources such as shared memory

and implementing task scheduling. Once the processors start executing a

partition (set of tasks) they must follow a plan for transitioning to

subsequent tasks in a predetermined fashion. Scheduling hueristics have

been developed by Ramamoorthy [15]. These are probably applicable, but

that discussion is beyond the scope of this thesis. The task execution

will also generate resource conflicts that should be resolved in a

systematic way. Djkstra, Knuth, and Coffman have developed efficient

algorithms for scheduling shared resources [11]. No matter what system

is used there must be a means to communicate between the processors.

It would probably be desirable to use the I/0 ports of each

processor as "mailboxes" [2,4]. This would mean that 1/O would need .o

be accomplished by memory mapping to leave the ports free. nerefore,

the interprocessor communication would ha priority over 1/O. The iO

could be designed to work through each processor's private memory, so

the shared memory would not be involved either.

Interprocessor communication through mailbox messages has been used

in systems such as MULTICS and also in smaller machines. It is an easy

way to quickly indicate that one processor has a message for another and

imply the degree of urgency. The notification requires only a byte or

word in the form of an address on the I/O port. The message itself may

be much longer as it can be stored in the common memory. The message

notification may be accompanied by an interrupt signal if it is

83

important enough to deserve immediate attention. Otherwise, the

receiving processor may be set up to check for messages at the end of a

task or timed to check at specified intervals. If many messages are

required, the mailbox may contain only a notification, handled on a

schedule, that points to a part of the common memory where the messages

are stored and prioritized. In this way the receiving processor can

handle the messages as its schedule permits. But it will be able to

accept a larger number of messages than would be possible if it waited

to handle each individual message in the mailbox as it arrived. he way

these messages are used would determine the system design to some

extent.

After the program partitions have been scheduled and loaded with

the proper pointers, the partitions would execute and point when done to

the next partition. This could be done at least two ways. That is, the

completed partition could return to an operating system or simply

transfer control directly to the next process. This design decision

would depend on the desired level of sophistication. By pointing to the

next process directly it would seem possible to execute faster with less

overhead. The proper synchronization primitives could be added to each

partition by the loader, so that the task could not start until it was

allowed to. Each partition would set its successor's primitives when

finished. On the other hand, this function could be performed by the

operating system by updating a table which would be checked by each

partition before starting. If the process was not allowed to start, the

operating system could retain control for more flexibility rather than

simply idling the delayed processor. But in a non-dynamic scheduling

84

situation for a dedicated system, this degree of sophistication is

probably not necessary. Tasks could communicate directly with each

other with little overhead.

APPENDIX B

ASSEMLBER MODIFICATIONS LISTI-NG

rONSIDERATXONS FOR AN ASSEMBLER SCHEDULED MULTI-NICROPROCESSOR -- ETC(UI
U6 80 R L STEWART

UNCLASSIFIED .FIT-CI-O-4IT MLE EE

MENOONEE, ME

11111 I N a. c 11~ DI5IIIII "'22
112-

, 1.0 111112-0

11IL2 1 -41.11.ICROCOPY RESOLUION TE

MICROCOPY RESOLUTION TFISTf CHART

86

*10 P2"11SC

C IERSICN 2 15 AP' 60 PEmF04mNS 5UITh4-ILiTv .1.ALYSIS

C FO. P'O"A 1... EL P J,;ESS:N: %.0

C JUMP ANALYStSj (30TH F : I-

C 6JU SOU- CE ^,Lo~) OVLY)e

JIMENSION LPC1Il ,JFjES(2:.)

DATA JP,Lf-qJP0ES/,C Cr,i' ',222%L/

04TA JPX 12::)' l

GC TO 5uJ

GO TC 53

4P24.11.173

,jO TC 50X

'Pe4l1.1b;

GO TC 300

0 2411*114.

C

C ZEmRO VAZI!LES FQ' SuITA3iLIT ECuATC

C SUITA91I&.TY FACTOR

C IN~PUT / OJUTOUT !NST"NiCTIONS

C AFITHP'ETIC /LaG:CA,. lN'.AFuc1:')'A

t4 A L

87

c CA~LLS

PIC=OI

C JUMPS BACKWA-OS (LwOOS)

C JUMPS F~-W'' (NOJT RELATED Tw A LOUJP)

NF=

C EYECUTA!3LF II4Sr-,uCrICjNS (NX ;ML.3J JSrEJ: T;1)E.-ix jL

K X
.fSTf'UGTli4'S Wi1ITI LICCPS

c -N:Trm'LIZE JUMP rA .. Z2x NJ

C Jumi TJ~LE (CNTAjNS: (1)JUMP ~ C

C :00FE.),S, (3)JLJ9P TYPE ,%,F (.)1ZILEx t* Ji

C ASSCC4-ATEO LO(P

C JL,;IP TYPE- . !PEI .JFCLa~.

C :CJ.'.DITIJAL 9CKWe~-2NO I.S.

c Z ,iCG140:r1;I4A4 !SACKWA4.. Z ~ 4 T

C 8 UNC)ITINA4. FOs ArmO

c W-,iTE H;EA,.E- FO- rUT,--UT O-G

6.34 FC IMAT (IHI,liXq"---INTEL 53. JUMP AN 6315--- ~

± "2.JOI Ii~ APR~ 43 --- $/

*1 P2L.161±...7

CALL LM-C(~EqPk

JFCOES (K(PT -1 'J~

88

VLL SMS;;rw(LA3EL, (PTC)

- - 4P-< SUITAM1LITY ;7R DA;A-LLFL OPCCE41-- ly DETE01I.--.f

f, iS TIDUCT r c I Te" VI IIG 4 :O.I..UL- T W:C

±!TTH4;47TIC Llf7CAL INCTRUrTIOll?

-~~~I C*i T'- - -

GO T

;cT TO ,

Tc!(% eVLT13~z~) GO To4 T. I5

(7 jmn~z- cr-Ht-b TVDE k. qJ!L) TArLr-

89

C FlkST FTI411 O EST -S DEFINED .E Fr.C 0- r

C ALL Mj- RCH (C, o<6EiT)

IF(IGOOE,i.E.15-.5) TO 527

C UNCONOjITI' NAL. IF FWJ, OCNIT KN3Oi DESI DE 'vT

IF(LOLS(K-CE5T)*EQ*-1) GO TO 355

C rOEST:.-NAT:3.-,, £N",ST-,U-;T.'N NC. 6~F JU.IP

JP I Jv2)=JPOEL(K3EST)

C JUOPr CLASS

JP (iJ ,3) =:2

GC TC 5293

UNCC4C.LTlCN.lL JU4P FO! f-.0

Jr- (NJ, 3)

WOC TO 53J

rl Cr'JOITIJNd1L. l.r Pwi.3 OONOT KNC4 IJEST '33 ET.

2 7 :F(LOL;S(0EST.*Ele-l GO TO 51'.

C ESTIt-AM'C:4 :NST -uCICN N4C. Cc JUMP' -;C.<

Jr (NJ,)=J0()ES(KJEST)

1; JUM9P LLASS

JF (NJ, 3) =.

Ji' (NJ,4) 'J

60O TC 521i

1; JU.MP FJ4W~IRO

426 JP(NJ,V=-<OEST

GC TO 530

C
C LCU91T A i.LOP IND jJ^.-EM~r4T L2CP To.3LE 0). 1TE

C

C

90

o SsaVE JUMP T A 3LE P'IIIEX CF -'J

L F (;iE=NJ

C;

C JUMP TA-3LE CVERFL~w

53C CO0N TI N UE

IF (INJt.GT.10) W:RITE (50,999)

~999! FCRt1AT (!X, 4+4'WAmiNING. ALJ'-AY L?)VE-:F1-6LEJ.

1 '*CkE THAiN 10i4 LCOPS."/)

3936 FCR! T(lX**+++vvAr,4'1NS. ARZAY J; h E-cF:LLED. -,E THAiq-

10 20iJ JUm-S,*O/)

C JU4IP AD~rmESS

C 1-r.CREME:4T JUMiP T413L.E P01 4TER

C

JPX (LIJEWN1,) NJ

GC TC 550

C i/(Oi.)-0T F

IF (IC COE@ EO.21 .;io l,.IZC.EsE0, 2419)I=

IF(MCD(LC0DET8)*EQ*6) Go Te 5,5

C

C CCUNT EYEGUTAeS.E INSTmUCTIGNS

c

551 N)aNX + I

JFX(LAi,4N,21Z

tuC TO 1
9

C CH~ECK(LO CC.PJST*-.uCT3I AT END LF F.AS3

c Sj4VE H4Q'i i*4;'Y JUMPS (NJMAX)

'C
554. CCNTlf:UE

f. i A X =(IJ- ±

C SA.DVE iiU4t3E-R jF L4Cr-S

LPMAY N

FINJD NX OF F40~ JUMPi IEST 7 i-T "AS T'j US-:

C IN CALC'JLATICOIS FG>K NL LATEP

C

C CHECK AL . JUMPS

,-C F;7 JrC=t,J'A(

C .0L-Ei-DY 'iOoo NX

IF(JF(JCZ)*GT*..) GO TO 55 7

c !F N09T CHlECK ALL SYl3i.,LS

Z ~ TH'.. iu', ASSCC WITH THIS -YIcL?

IF(JF (JC,2)*.lC.-JS) Ji&(JCqZ) :j-0ESCJ5)

555 C C NT i UE

557 CCUNT I UE

c i%.XIJ LOOF- OF T-i-*S Pos.TIO4 LN0E-XZS JUiP -E

C

CQ 590~ M.C1iNJIAX

M JZ4- mc

C H T mIS JU'MP iEEN .4S$SCCIATEtC 4!Tpo A LL,

IF(f- ijgs) !T C.A40 JP(tj#3 .GT - G T,, i!.

92

C _ tA'JCt, ACC~rW. 4G T:. JU14P TYO--

:F(JF (MJq ZI.;,T 9 0AN3. JP (I J9 3)LT. 3) G', T, -i

IF(JF(iJ,3).E'lo6) ,;0 TO 576

1 F(JP (MJ, Z) .E). 3) GC TO0 5 76

C IF IT WAS ;,iOT GNE OF THE A-_CVE9 3-IL04 iM:' EM-

-ITE(5C,?'-) MJ

C OETEF ,IVqE LLJCP CLs-SS 1., 29 U.- 3

C THIS LO.,F EH--Mi F')iiAF JU.if-S (t.Flu hu
C TH4E- WITH THE 6ACKWIAO itU1P 0-j). Ti 13E a3..O
C T -_ FCRAsA'O JUMP MUST STAr%.f it)P

56Z CONTlt-UE

C f-'!IAL.IZE E'4TiY (KFE) A'4, Ev:T (K~Fl T .

9l F I zfJ- 1.

c IS IT A FNJ Ju~IF?

C YES* DUES IT GRI ;NATE lN THE :' F

0 ~ TC 564

C oC. COES IT JuI'P iN?

IF(JP(rdFl,2I*.LT.JP(MJZI.LjR.JQ)(J4F12).GT.JP(..IJt:))

I GO TO 574

CA..L FIN3LF(mJl

W IT E (5J ,~i3 NiF I, 4 JLPN

GO~ TC 5?i.

93
C L(.ES ORIGINATE 1'. THE L3I0P, -XE5 iT Jtur;-)J',?

564 CCNTlt.UE

IF (JP (NF!921 sGT .JPCMil~ GO) TO 5t)5

C NLTE !14SIQlN.FlCA-NT 1:4TERI0- Fl4) Jui.j~
CALL FINDLPUMJ)

I F I JP (%IJ,3). E1. 1) W;.ITE (5,~S I

GC TO 572

C YES. JUMP OUT. E-ATmY IF C01014JIINmi..

565 CLNTIMJE

!F(JF(NFi,3).E..6) KFE=1

c ExIT t,,Y Ex.-ST S 7NCE THiEm-E A Ju.AP Cut.

KFu=2.

C

c CHECK ALL P:E v I US FA 0 JUm PS 10 :7TE&7>E 7~

NCA i=tNF2 -1

00 57C NC16=iNCA±l

c 13 IT FWJ?

c INSIDE JUM:P AROUNJO?

IF (JF (t, 2).LT .JP (.,2)) '00 T6 7

2 Go TO 57J

JP 06 t~ ,hJO MJ v4 J

134 3 F kAT(NT COND FWD JUM P1 EliTE -S 3 - .. < JU.,P"

1 I4** (.Cop Fi4' M CUT ST3E Tr 'A iG IV
c CUmPE -T JU41F TYPE F170V DC 574q?

IpF(J (NFfl,3I.EQo;-) Go) To it6

C TYPE 8. I. JUrID A-CU40D A TYPE' 6?

liF(N693) *Efor) GJ TO r'?,.

94

'9 C 2 OCMAT (I A"*** 0 JiL. E L f) E;.,T Y T(C *4

1 At; JUt.Q --- UNLESS --Y --ETfUfU. ;r uLC' j.,f

2 "Fk CiM JUMP CUT*"/)

rFE1l

c CGMPLEX CLAS)W 3 LOtP?

C

.F(JF(rlJ93lNE.1) JP(MJ93)=3

GC TC 571

566 CLNT1t.UE

C TYPE 6. IS JU-11P ~.UOA TYPE 6?

C

575 CCN~T%.iUE

'F(JF(MJ,3).E',2.2.ANO).KFE.N,.E.1) idr'..TE (&~

572 Ct.NT. iuc-

7 p CC NT _7 UE

CALL FINOLP(4J)

GC TO 59a

1 14" (LOCrF'01 ") , JT 13 NUT Sl'G% 1Co'...T '- -T-,

2 "ST- U ;T Urt-L . Si AT:j1 V

q49~7 FC+KMAT(1A,"I(4OTE* Fw'e) JUMFOO.W* ALSO -4*:7,4 Jui .F.

C T 14IS LUOF CHECK(S A LL S U6SE QUE N T L; JJOS (4F ST

tC T- F w 1U 1 r (.IJ) FtJ'UN~ IN JU 5 r Ti S E F~ ~J J L P

95
C -1#OU~iL ANY OF THW OTHIER LGCe;- ('4Fej)

576 C CN T' PUE

DL 577 .4Ci~1,Ni8L,

C 1S NFb A BACKV4A t) JUMIF?

:F(JF 09'6,23) GT .3) G3,j TO 5 77

C YES, FDOES MJ JUiiP A; 2UNJ Li Jr NFb?

GO~t TO -577

c 0-0. IT JU;AP A4;JU;NO A FW3 JUMP

jF (JPD('AJ,.,) *LT. * .t,' (-JP tji) ,3)o *

CP LL FIND -P (NF3)

4 F CkMA 71 (X t*44CTX- FW 0 JUM P" 14, A - U U D A,--K j

r" ISSOC1ATE wA-TH -L(OP

JrF(MJ,.) =-:,JF9

i77 CC NT I IUF

t, F U=M J-1.

C TrIS LO12~ C-4ECKS 0-ALY P-E VTj U r W 3 JUti fl F 3 JN .:sT

0 T -E F WO JUM P ('IJ) TO0 SEE IF I HE -E IS JU - ,U-NC 'IJ.

CO 581- NCF=1I,4FU

r4CU=tJ-NCF

c 1S NCUi A FhO JUMP?

lF(JF(PNCU93).LTo4) G TO 5d4

C YES. DOES N,;U JUi~jP UN MJ?

C YES.

.

96

C .-LREiAuY 4Z)SOC 41TH4 OTMiE- FWDO JUIPS ?

1 NCU*-JP (N"CU 4)

I vdFITE (5,92 l*44,qJ(oCU,.0

C -SSCC JUMIP !*.iU A4LTr, -IJ TC Snt;W JUAP

i FCRMAT (,9*NTE. JUiF "14 A LS) JU~lPt.'Z f- J'JW**

:XjU CONOITICINAL?

iF(JPF(NCU93)oE:I.- T GO TO 5 6,

54C(ANT NUE

3 9 F CfR4~ MA 7 X 0 S S nL E E U V0 u i.C3 F A J Jj P

I Lu** A.CU~rD F40) JU*?P

C IF FWD JU.'P CMJ) 7S 'ICT ASSOC, AS-U)C :1o*r :--

45uli FCR.MAT (IA****** POSSIE..E E."Ca-u. NCj EX:7T -A Cr

I JUM'*4" LGPI. UNLES! 3 Y U-L ~ -CT;

2 ".C- OVE-iLoPPED i.3./

Z ENDO VAIN LOUP TO CHECK JUMPS3

CGNTIrMJE

elTIhIS LOOP CHECKS THE FINAL JUI-P TA56E I)-~,

c LCOPS A-S E NESTED ANO TO SEE F~Y~~ :

c VNHICH WdCUL3 CAUSE Erkz.L6S IN 7HE JJM2

C FLAG- CUTEkMUST LOOP Crm LISTILNG

LPM(CCE) = -..P(6OJE5)

OC 586 KCJitLPM4X

c LkECK THM(ZUGHi w T436E ECKAICS

KCZ (L -MA A +1) -K<,Ni

97
.LF Fl- ST L J3I P~ E , ~ Tj L JT

1F(KC.EhQJ L;T5

G ;E V I CUS &iF*00 '4cE3TE) INi P ESEr.T LJ-J (<C) ?

IF(JF ((!A.-:S(<A)2) .c.JP c.?(vKC-;:),f I- TO n 6

.F(<C*EQ.LouES) 50 TJ 56

C F EVICUS LOO:F A4EsrEo IN' CUTE,..jST .. A(.)]F3S) ?

1 W 1 TF (5u'qTj92) KC-19LC3,Ez

C P-EVICUS LOOP VE--L4kDPEO Y4!Tri P-ESE1T -j- (<,.J?

1 *JF (LP(KC) ,2) .3T.JP (LP (KG-1) ,2))

2 W;,- TE (,-)KG-19,i<

~. ~-.SF VALUE -'Y 4CT 3E *.% V..T

2 E AO~T./

C-(TC :i-,7

4332 FC--iAT (~~GE &F. 3E~I O->

.0;.T :S .--;ES?

;~7 I F (JF (LP (<C ,2 E ;. J:3 (A SLr (L DES)) ,2 T,* 5e

C 4LTE C.UTE-; i.)ST L,,Of- It,. TAB8LE

6COES = K:-

IF (LC0E5.E'"d.Lr;! X) ,,& % 53,!

LP(LCflES) = .iP(..CQE)

L LNT i,,Uc

C FIN0O THE 7.)TAL NL13;E tF FCA;.,iJR JU1i~

C t.CT ASS4.CIATED o4CLTH LUODS

JC r,1 ±cj=1q ,1.A

jF CCNTI ~ -)sE.)JU1E~

98

C'Cu147 ljT-;'JCTIZ- 4i IA' L-,XJFS

IF(LF (NC?41J .GE*U) GO TU 594

IrNSTL = JPN-(P(kT),I J;F(iA 3S(L -(p:..T))

NL=NL+.4STL+l

GO TO r ;5

31-+ CLNTIk-UE

5 CONT.r'uE

It>FLCAT ([.I C

UC=FLOAT (.1C

'3J=FLCAT(i~o)

;-'N=FL CAT %~X)

r'L=FL CAT -L)
-FC(KX-N..s.. ") GO TC 5 52

W-ITE (5 9 ,j- SF

-i Fi;t-MAT (" SU4,T4.-:L:TY FAC70-R FJ 0-A'-LL-L I-

1 - S '*7,- A .Y VALUE upEA'TE2 T,1 4 43~: .

2 "AELE.*/)

,..C TC 5-E

<1'l FC-'AT (~ -L*:Lfl ST-UCTU- E IS -'uT F-

I P- .GESS:N ; LT T-%.S V,

596 CG;T1NuE

C P INT THcE JUIM.' TAiL E

C

166 (50-9i999)x .3 "~3

99

t,5 Fck.Y40T (iAT45LCj0P JUPg1gF-,1*f)qT

Do 0 C IZ)=,,NJMAX

1 ~T E (5 j v, I2 ID, (JP (1 VLJ ,IV 2.,-)

'AF (0. E,,.jP~ 1 7 1 JNX =JNX + 1

:F (1 oEQ. JP (14f W,;,U-TE (5 0 il 315) J..

c P I4T TIE JU;1P AALYSIS

~-~JFCG'-T (±X,T4+79'JUMO A CA Ly S-3/)

-;t,.rEX THr-'.,U%,ti JU,-iP T46LE

DC 597 IC=I.PNJMAX

IF(JP(10,S) .Lro6) GO TOj 597

G r-ECK FtOm ur\Y o'&:--tUMVENTE0 Z;-AST-T c~.S

C LOO0K Fuz rKEVIJUS FG,-wA- . JUMP TrC 71ST~~:;T,-

. PTEF; ! Oj,;Ci).1T;CA& JUMP

DC 15962 1 X 1 CO

I CO IC t-

IF(JFU3"CN,2)*.EQ.(JP(IC,1)+Ifl W) Ti -

-k CONTINUE

C L.OOK PJ4 6j.2? 34C< T-; I'4S1--UCTIJ,. 4FTE.- L,~, L~

IC N= IC+1

DL .- JMS

100

!F (JF C:ZC 93)GT. 3) L'J TO 5963

.3,43 CC NT'r NUE

C F NC ~ PA~TH V#S FOUND* h1E E-;.Jt-,E$.,

t.CPATr4 = JP~.LCtl)+l

9-, F(,kM~TcX,Te,"** POSSIBL.E LA-. ;u-.r T

1 IS -:sru -L G .4 U 4L ES S BY COA LL .~

i -96- 4 iF (JF (1C,'4).NE .6.ANJ3. JP (I1C'q 4 E .- I C) T3 ~7
WrITE (5 9,4;j LC 9J-1(C , 1

~'4<i FRM1T(1, (9 4TE F'WI JUMP .~ EA'.:~ -~O .

1 * S NO T ASSOCIATE& .AITH A. Y LGOP."/)

-,,7 CCNT-)dJE

5 0J F C', slT (9 X. L ko0"S 1 N T HIS ;-OG A!

DC5 9 !L=1*LPIAX

1 9 EJ (I (LPIL) 3

j5 3 1 FL6 -AT(6X,T5-,'F> mWAR0 JJ('P' LS3C-O.Z.TE- "-:T-

00 5 96 IC=1,NJM.A

'F(JPUC,'9r.GI l~4~J(',)L:3 GC~PL GO TO).I!.

KFF=1

5 0 CC NT 1 NUE

101
%~.T 22

C l'&NTlAi..IZ E TA. 3H.4 LDCF FmEE P-iOV-.4 . C-

L FP(=J

P STCFfA= ,

IF(,.Pl4AX.EjQ.j Gu TO 23

C YES. EZTOPE L)OP TA3LE Ell.TaY

LP(LODS CP OES)

C SET FLAG fj STJP INU'1 ,EkS AT D~STl*ATA-,.

NSTC~h J3(LP(L~jOES),2)

C SET FLA4;1 TO STOP . AT JUMiP

MISTCPZ JP(LrCL!)DESJ,±)

SUBICUTIME F!.JOLzI)

C I '-IS mOUTTI'IE FI1*i4S T-4E LDF- -U,-2:K (.A_

0 4 ACK JU-P (1) F-: -EFE- ENCE PJL- -SE I

L FNO= L~

10 ' C'jT = LP AX

10% CONTI NUE

I ;40T FuUN09*/)

3 ru LPt4U:LCNT

E N' #

P21172

C M'C '4 1to ST J (C. 2) pJ 2, 4g),T , S T P

102

CC

t; SIrCw '40,7E S F - F. ~-E~ P.Lu,- -Ik

C (LFCl-fl 3N ; ST:',G

C CC'E T A .u 15 .E L.J YE7T?

I F JFX (L ra' ,.' 2.LT T 3 11 T(.

C -c~ C 1 a ,A.UTSIDE LJ)F-?

C LaST LJOP?

.F(LCf'E5. 0.L1lAE) G-2 TC 23U

c AIT jJUMP F~d. .N UUTSA-'1E 6,Ci? -- 3-T

,L. 5: LC = LC'IE!39LPX

C FCU,,C NEX~T (,jLTSI..E L.. P?

52 CD-JTINUE

C SET I-EAT UTSiDE LLJz.

C iESTLF.E L.CQF TA-.. -%s P-ESET Fi..,..j

LP'ILCrES) a -L*(.,OE3)

mSTvP?. x JPILO(L, S)sZ)

%;C TO 2C 3

103
i. eIT EI t-) 5.L ,2 ,) T ((i|J +t. +), j==

C'] TC ..

'.CDE LjiE4
2-j. 6FPLISLF;j'1

C >"M E f.T i.tE

3 1 IT E (5 E T t(P,: j=:

" , ,JPA L '-E N K : L E ,

40
?

3 .2 1 V ,-,
; 31 iVE,'. .o', K: - "'" ,4% + * //

T 4. 6 1 79 CT
2- T.+ ",'+."4 ,Ti - "'+ C",T7 ,'A' • . JE.", .; *J.j *.- LF'

3 "+'+ EA 0"T-7 "" -" " "

L -3 i. , q A,3p 9 9

12 C' L - T t 59 9 9 , S '* 4 ,; ,3(2:: ;) ' ,. " 9 '"

2 x .. 1 14 x9

,- - - Y r4UM'-E. L . E'.T .r

C 4 Y1tL T~j

APPENDIX C

PROGRAM SPECIFICATIONS OF THE

MODIFIED ASSEMBLER

104~

105

This is a brief discussion of the size of the program and how much

time it takes to run. This modified assembler requires approximately

34K to load in a CDC 6600 and 54K to execute with its associated system

routines. The compile time is approximately 8.7 seconds, but it could

be loaded from disk in a fraction of that time. The execution time

depends on source program length to an extent, but mainly on source

program complexity. Execution times of 0.645 central processor (CP)

seconds to 9.1 CP seconds have been noted. These were for approximately

85 and 1200 program lines respectively including instructions and

comments. However, a test program of approximately 120 lines that had

many jumps took 8.2 CP seconds to execute. All these numbers depend

also on the host assembler to some extent. The host used is a fairly

sophisticated large program that can assemble either INTEL or MOTOROLA

source code. To modify the assembler, arrays totaling approximately

3100 words were required to be added. The present version can

accomodate source programs with up to 200 jumps, 100 loops, and 1000

lines of instructions and comments. These arrays can be easily adjusted

to smaller or larger source programs.

.. 1iHmiil III.I[.. .. . II-j

I, ml o

APPENDIX D

INTEL 8080 OP-CODE GROUPS

4 106

107

For INTEL 8080 assembly language, checking op-codes to count

instructions is easier than checking mnemonics. Mnemonics would require

checking character by character. The result obtained would require

checking against a table or sme standard to decide which ones to count

(NAL, NC, NIO, or NJ). But op-codes are made available in pass one by

this assembler for checking assembler directives (pseudo op-codes).

Since pseudo ops are of no concern for this analysis of instruction

types, only valid instructions are checked.

Instruction op-codes are grouped in a way that allows easy

instruction identification. Identification is made by using the last

digit of the op-code and the INTEL instruction type. The eight INTEL

instruction types (called K in the assembler) are based on the

references made and instruction length. These are used to determine the

instructions in each of three main op-code groups. These octal groups

are conveniently divided as 0 to 177, 200 to 277, and 300 to 376. In

the first group, all instructions for which K is three are arithmetic or

logical, except if the last digit (modulo 8) is two, or if the op-code

is 0 or 166. In the second group, all are arithmetic or logical. In

the third group, if K equals four,-the instructions are either jumps or

calls. But if K equals three, they are I/O unless the last digit is six

which indicates arithmetic or logical immediate instructions. This is

why it is so easy to determine the type and count the numbers of each.

If the op-code does not fall into one of these groups, it is simply

counted as an executable instruction.

